Chapter 4
Computational Models of Vascular Mechanics

Joseph R. Leach, Mohammad R. Kaazempur Mofrad, and David Saloner

Abstract Many of the world’s leading causes of death involve pathology of the
vasculature, both arterial and venous. In addition to the biochemical and genetic
factors governing vascular health and disease, mechanics strongly modulates the
form and function of the vessel wall. Biomechanical analysis is being increasingly
used to not only elucidate key disease processes, but also to predict disease pro-
gression and response to therapeutic and surgical intervention on a patient-specific
basis. This chapter reviews some of the recent advances in computational vascular
mechanics, with references to key works in constitutive modeling, fluid-structure
interaction, image-based modeling, and atherosclerotic plaque mechanics.

Keywords Vascular - Carotid - Fluid-structure interaction - Constitutive modeling -
Plaque rupture

1 Introduction

Cardiovascular pathologies including coronary heart disease, cerebrovascular dis-
orders, peripheral arterial disease, hypertension, and congenital heart disease are
the leading cause of death worldwide [1]. A substantial portion of these condi-
tions involves pathology of the vasculature, both arterial and venous. For many
vascular diseases, mechanical analyses have been shown to provide an improved
understanding of disease initiation and progression, as well as the effects of surgical
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and pharmacological interventions [2]. The progressing understanding of cellu-
lar mechanotransduction, and its translation to the tissue-level biological response
leaves little doubt that a thorough knowledge of the stresses and strains within the
vessel wall is needed.

Over the past decade, the level of sophistication with which vascular mechanics
analyses can be made has increased dramatically. This is due, in no small part, to ad-
vances in computational resources and computational methods. Characterization of
arterial solid mechanics behavior, with more complete and realistic constitutive rela-
tions, has been another factor allowing continued progress in the field. Additionally,
advancements in medical imaging technology have allowed patient-specific studies
by providing the morphological, compositional, and physiological data upon which
such analyses are constructed.

The field of vascular mechanics is as branching as the vasculature itself, with cur-
rent efforts in constitutive modeling, fluid dynamics, computation, medical imaging,
image processing, and biochemical/biomechanical growth and remodeling simula-
tion. This chapter serves to provide a review of recent advances in these and other
sub-fields of vascular mechanics. A brief review of healthy and diseased vascular
anatomy will also be presented.

2 Healthy Vessels

Although the ultimate goal of vascular mechanics analyses is often a deeper under-
standing of pathology, it is imperative to first understand the structure of healthy
vessels. The vasculature comprises the arterial and venous vessels, which convey
blood away from and toward the heart, respectively. This review will focus solely on
arterial mechanics, as comparatively little work is being done in the venous realm.

The arterial vasculature consists of the pulmonary arterial system and the sys-
temic arteries. The two pulmonary arteries arise from the pulmonary trunk to convey
deoxygenated blood from the right ventricle of the heart into a tree-like structure of
smaller arterioles that feeds into an even smaller system of pulmonary capillaries.
The pulmonary capillaries allow gaseous diffusion to occur between the blood and
the atmosphere, and the now oxygenated blood is returned to the left atrium of the
heart through venules and the pulmonary veins.

The systemic arteries convey oxygenated blood from the left ventricle of the
heart to the rest of the body. The aorta is the largest systemic artery (lumen diame-
ter ~2.5cm), and receives blood directly from the left ventricle through the aortic
valve. From the aorta, oxygenated blood passes to the other conducting arteries (di-
ameter ~2.5 cm—1 cm), which convey blood to the various anatomical regions. Next,
blood is distributed through a branching series of tapering vessels (diameter ~1 cm—
300 wm) until it reaches the arterioles (diameter ~300 pm—10 pum) and capillary
beds (diameter ~8—10 um), where the blood exchanges gases, nutrients, and wastes
with the body. In this way, the arterial vasculature is conveniently divided into four
classes of vessels: conducting vessels like the aorta, distributing vessels that deliver
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blood to specific organs, arterioles, and capillaries. The structure of the healthy ar-
terial wall differs between vessel classes, reflecting their different locations in the
circulatory system, and their different roles. The investigations typically made in
the cardiovascular mechanics community concern the conducting and distributing
vessels, and thus the arterioles and capillaries will not be considered here. A vast
amount of work being done on cerebral and abdominal aortic aneurysms is primar-
ily focused on the fluid mechanics involved. Modeling of these conditions will be
discussed extensively in chapter 5, and will not be considered specifically here. The
methods used in modeling these conditions from a solid mechanics perspective are
the same as those discussed throughout this chapter, and most current efforts are
geared toward establishing accurate constitutive relations.

2.1 Conducting Arteries

Conducting arteries are named for their function within the body, namely, conduct-
ing blood from the heart to the rest of the body. Conducting arteries are also referred
to as elastic arteries. The aorta and other conducting vessels are generally of larger
diameter (~1-2.5cm), are thick walled, and are elastic. These bulk properties, and
the underlying microstructure of the conducting vessel wall are optimized for prox-
imity to the heart and the support of large volume flow rateces. The conducting
vessel wall consists of three primary layers, the tunica intima, tunica media, and the
tunica adventitia (see Fig. 1).

The intima is the innermost layer, and comprises a monolayer of biologically
active endothelial cells supported by the basal lamina, which consists largely of
a mesh of type IV collagen, and the glycoproteins laminin and fibronectin. The
endothelium of the intima provides a non-thrombogenic interface between the vessel
wall and flowing blood. All four arterial classes possess a tunica intima.

Tunica intima:
endothelium
that lines the
lumen of all
vessels

Tunica
adventitia:
collagen
fibers

Tunica media:
smooth muscle
cells and elastic
fibers

Fig. 1 Cross section of a typical conducting artery showing the intimal, medial, and adventitial
layers (From http://adam.com)
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Beyond the intima is the media, which is composed primarily of smooth muscle
cells, elastic connective tissue, and various types of collagen. Fenestrated elastin
sheets divide the media into concentric layers of smooth muscle reinforced with
elastin and collagen fibrils. The innermost and outermost elastin sheets are called
the inner elastic lamina and the outer elastic lamina, and they separate the media
from the intima and adventitia, respectively. The smooth muscle cells and bundles
of collagen fibrils of the media are often oriented helically about the vessel axis with
a small pitch such that the dominant mechanical reinforcement is nearly circumfer-
ential. Vessels closer to the heart generally have a greater number of elastic lamina
than more peripheral vessels, which are more muscular in structure.

The elastic compliance of the conducting vessels, and particularly the aorta,
serves to smooth out the pressure wave of the cardiac cycle. When the left ven-
tricle contracts, blood is expelled into the aorta. This sudden rise in aortic pressure,
to 100-160mm Hg, causes the vessel to distend radially, acting as a capacitor for
blood. After this systolic peak, when no blood is being pushed into systemic cir-
culation by the heart, the compliant aorta relaxes and its elastic potential energy
is used to propel blood forward into the vasculature. In this way, systemic flow is
maintained during diastole, and the blood flow waveform of the cardiac cycle is
smoother than the pump action of the heart. The media is the most mechanically
relevant layer in the healthy arterial wall, and is what gives conducting vessels their
capacitance.

Outward from the media, beyond the outer elastic lamina, is the tunica adventitia.
The adventitia is composed primarily of fibroblasts, ground substance, and bundles
of collagen fibers. The collagen fibers are arranged roughly helically with the vessel
axis. The average pitch of the helices is typically much greater than that of the
medial collagen, although significant directional dispersion is often present [3, 4].
The adventitia secures the vessel to perivascular tissue and also contains the vasa
vasorum, microvasculature that provides circulatory support to the adventitia and
outer portion of the media. At low luminal pressures, the collagen fibrils in the
adventitia are only partially stretched, and the adventitia is much more compliant
than the media. However, under a high-pressure load, the collagen fibrils are further
extended and the adventitia stiffens significantly. Thus, the structural mechanical
role of the adventitia is to act as a sheath that prevents overstretching of the vessel
wall. There is also nervous tissue in the adventitia, and recent studies show that this
layer plays a role in growth and remodeling and maintenance of vessel tone [5, 6].

2.2 Distributing Arteries

The distributing arteries are also known as muscular arteries, because their thick
media are made up almost entirely from smooth muscle cells. These arteries are
smaller than the conducting arteries, with diameters in the range of about 1 cm to
500 pm. In the largest of the distributing arteries, there may be 30 or more layers
of smooth muscle cells, and only two layers in the smallest muscular arteries. The
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smooth muscle cells are circumferentially oriented, and their behavior is regulated
by several different vasoactive substances [7, 8]. The vasodilatation and vasocon-
striction mediated by these agents, and also by the autonomic nervous system,
are a primary mechanism by which smaller distributing arteries and arterioles help
regulate systemic blood pressure. The activity of the smooth muscle in these ves-
sels also helps control the distribution of blood flow to the capillary beds of various
organs and tissues [8,9].

The media of the distributing arteries typically has very little elastin compared
to the media of the conducting arteries. Often, the only elastic laminae present are
the internal and external elastic lamina, which separate the media from the intima
and adventitia, respectively. The proportion of collagen fibrils in the distributing
vessel media is also smaller than that of the conducting vessels. The intima of the
distributing arteries is compositionally similar to that of the conducting arteries but
generally contains less subendothelial basal lamina tissue. The adventitia is similar
to that of the conducting arteries.

For a more comprehensive review of vascular anatomy and physiology,
see [2,8,9].

3 Healthy Arterial Mechanical Response and Constitutive
Relations

For any biomechanical investigation, the character of a disease state is most fully
understood when we are able to accurately compare and contrast it to the normal,
homeostatic state. Thus, although many investigations in arterial mechanics are mo-
tivated to understand pathologic conditions such as hypertension, atherosclerosis,
and aneurysmal disease, a careful study must also be made of the mechanics of the
healthy artery under normal physiologic conditions.

Much of the early vascular mechanics work relied on analytic solutions to the
governing partial differential equations. This necessitated many simplifications of
the geometries, boundary conditions, and also the constitutive relations employed.
With the continuing development of finite element methods and digital computers,
numerical methods are used to consider more realistic conditions, and models are no
longer bound to constitutive relations chosen for their ease of analytic computation.
A great majority of the recent arterial mechanics research uses more advanced non-
linear constitutive relations to represent the arterial wall tissues, and the governing
equations are solved on complicated domains using finite element methods almost
exclusively.

Earlier work in arterial mechanics was aimed at understanding wave propaga-
tion in conducting arteries. A detailed, structure-based material representation of
the arterial wall was therefore not needed; only the bulk response of the artery was
of concern. The studies by Womersley [10—13] and Morgan and Kiely [14] repre-
sented the right cylindrical artery wall using simple linear thin-shell theory. Other
early work in vascular mechanics saw the application of thin and thick-shell theory,
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isotropic and orthotropic material formulations, vessel tethering represented as a
perivascular pressure or an “inertial” Kelvin-Voight surrounding material [15], and
the inclusion of initial stresses. It should be noted that the initial stresses considered
by Atabek and Lew [16] were included as independent parameters to account for
the effects of in vivo axial stretch and systemic pressurization, which are large-
deformation processes that could not be accounted for in their linear elastic model.
These initial stresses are not to be confused with the now well-known and often-
considered residual stresses first acknowledged by Vaishnav and Vossoughi [17]
and Chuong and Fung [18].

The healthy arterial wall is a nearly circular cylinder comprising three layers.
Two of the layers, the media and adventitia, are mechanically relevant. Surgical and
post mortem observations show that the artery is longitudinally stretched in vivo;
severing the artery transversely causes recoil of the artery along its axis [19]. As first
observed by Bergel [20], an artery cut longitudinally will spring open, forming an
open sector defined by opening angle 6. Vaishnav and Vossoughi [17] and Chuong
and Fung [18] noted that this indicated residual circumferential stresses in the artery
wall. Residual stresses serve to reduce the maximum circumferential stresses in the
wall, and also decrease the stress gradient through the wall, as shown in Fig. 2.

These residual stresses have been attributed to a differential growth process at
work during development, although understanding is still limited. Simple cyclic
inflation tests like those performed in [22-24] show that the typical conducting
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Fig. 2 Principal Cauchy stresses in the deformed media and adventitia in a physiological state
(a) without consideration of residual stresses; (b) accounting for residual circumferential stresses.
a denotes the opening angle of the stress-free state. These results were obtained using the con-
stitutive relation given in Egs. (24a, b), with the material and structural parameters listed in Fig. 3
(Taken from Holzapfel et al. [21])
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artery is mechanically anisotropic [25] and has a nonlinear stress-strain behavior
in both the axial and circumferential directions. Arterial tissue is also known to
be nearly incompressible [26], which is a macroscopic reason for the significant
axial/circumferential coupling seen in the mechanical response. Of course, there
are structural reasons for this coupling as well, shown in many investigations of
the vessel wall’s microstructure.' Studies like [27, 28] have also shown the arte-
rial wall to be viscoelastic, and possible implications of this were explored in [29].
True viscoelasticity is often not modeled in the literature however, as significant
preconditioning of the vessel leads to a nearly repeatable elastic or “pseudoelastic”
behavior [30]. The smooth muscle tone in arteries is regulated by several vasoactive
substances and also by autonomic innervation. While a fully comprehensive mathe-
matical representation of the artery would account for smooth muscle activity, such
models are very complex and experimental data is not fully available. For this rea-
son, nearly all recent research focuses on modeling arteries in their passive state.’

The arterial wall is thus a complicated structure, and the formulation of suitable
constitutive relations is a formidable task. Through careful acquisition of experi-
mental data, and application of nonlinear solid mechanics principles, several groups
have proposed material formulations that can represent various arteries under phys-
iological conditions. The following serves to familiarize the reader with only the
basics of arterial constitutive relations, providing the very fundamental mechanics
and experimental approaches, some well-known and widely applied material for-
mulations, and a view of the trends of arterial constitutive modeling. For a more
complete treatment of the relevant solid mechanics, and additional details in the
formulation of arterial constitutive relations, see [2,31-33].

The earliest characterizations of conducting artery mechanics recognized that
the mechanical response was nonlinear and anisotropic. Due to a lack of suitable
non-linear constitutive relations, and for ease of understanding and computation,
however, early work treated arterial tissue as being linear about some reference con-
figuration. In this way, computations of the stresses and strains in the artery wall
could be made using small deformation assumptions and therefore linear formula-
tions of stress and strain. Hayashi et al. [23] used a linear model to characterize
the mechanical properties of human intracranial and extracranial arteries obtained
post mortem. They also studied wall thickness and the thickness to radius ratio so
that mechanical aspects of the origination of cerebrovascular disorders could be bet-
ter understood. In their tests, freshly resected arterial segments were canulated in a
physiological bath of Krebs-Ringer solution. The segments were stretched to in vivo
length and pressurized using the bath solution so that a series of internal pressure-
external radius measurements could be made. Before reliable measurements were
attempted, the arterial segment was preconditioned so that stress relaxation effects
were minimized. The segments were then pressurized in a consistent manner from

I See the many great references [3].

2 See the “Current Developments” section at this chapter’s end for references to the most recent
fluid-solid-growth models that incorporate active vessel response and remodeling.
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0-200mmHg and pressure (P) — external radius (R,) measurements were recorded.
Hayashi et al reported their finding in terms of two parameters, the stiffness pa-
rameter P and the incremental modulus Ej., given below, which describe the
comprehensive stiffness of the artery segment, and the material of the arterial wall,
respectively.

3P 2(1 — v R?R,
P Y=g (R, — _ i
in (“/pg) =B (Mg 1) Ene= (RZ — R?) (1.0

where Pg is the internal pressure at the reference configuration, and Ry is the ref-
erence inner radius.

The calculation of E;,. at the reference configuration, a transmural pressure of
100 mmHg in [23], relied on careful measurement of the internal and external radius
of the segment, as well as an assumption of the Poisson’s ratio v. § and Ej,. allowed
a quantification of the material properties of intra- and extracranial arteries, and
a greater understanding of the dependence of mechanical response on anatomical
location and age. Such information and the similar linear characterizations made
by others [34-36] were of limited value, however, in accurately calculating stress
fields in materials that were known to undergo large deformations. The incremental
modulus can only be used for predicting behavior of vessels in configurations very
similar to the reference state. Additionally, incorporation of known residual strains
is not feasible in these models due to the large deformation required in transition
from a zero stress state to the residually stressed no-load state, as in [37].

Chuong and Fung stepped beyond the linear regime and used an exponential
strain energy density function to describe the nonlinear mechanical response of
the rabbit carotid artery [18].This allowed treatment of the arterial wall as a true
three-dimensional, orthotropic, isothermal, hyperelastic solid capable of large defor-
mations and non-linear response. The notion of pseudoelasticity was introduced by
Fung [30] to address the nearly repeatable behavior of the preconditioned viscoelas-
tic material, which could be described by separate elastic constitutive relations in
loading and unloading. However, very few studies address pseudoelasticity and in-
stead derive material constants from loading experiments only, treating the vessel
wall as fully elastic. Chuong and Fung’s exponential form, given below, is one of
the most utilized phenomenological constitutive relations in arterial mechanics.

W = %c <eQ — 1) )

0 = CIE12QR + CzEezg + C3E§Z + 2c4aERrEpy
+2c5Eq9Ezz + 2c6 Ezz ERr 3)

In the above, W is the strain energy density, ¢ has units of stress, c; are dimensionless
material constants, and E;; are components of the Green-Lagrange strain tensor
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where F is the deformation gradient tensor and I is the second order identity tensor.
The second Piola-Kirchoff stress tensor is given by

ow
S =— 5
3E )
and can be transformed to recover the Cauchy stress tensor as
W
o=J"'"F.— FT 6
3E (6)
where J = detF is the local volume ratio in the deformed state. A common

approach that addresses incompressibility constraints and is better suited for use
in computational mechanics decouples the strain energy density function into a
volume-changing component and an isochoric component. This allows the Cauchy
stress to be written as

W
a:—pI-I—F-a—E-FT (7)

where p is a Lagrange multiplier which enforces incompressibility.

Whereas the second Piola-Kirchoff stress is convenient for theoretical consider-
ation of nonlinear mechanics, the Cauchy stress is preferred in experiment because
it describes the stress field within the solid in the deformed state. Because of this,
the Cauchy stresses can be utilized in the determination of the material constants c;
of Eq. (3).

To specify the dimensionless material parameters c;, a specimen is generally sub-
jected to a known load and allowed to reach equilibrium (other studies can address
creep and relaxation). The equilibrium balance equations, with the applied load
boundary conditions reveal the magnitudes of the relevant Cauchy stresses, and
the stretches or strains are measured experimentally. The model representation of
the Cauchy stresses, dependent on c;, are equated to the stresses determined from
the equilibrium condition, and the c; are solved for. Practically, for three dimen-
sional states of deformation, this is done for several loading boundary conditions
and the ¢; are determined through a nonlinear least-squares optimization.

Although the original form of Eq. (3) did not contain shear terms, they are easily
included to account for more general kinematics, and this has been done in [33].
Chuong and Fung used Egs. (2) and (3) to describe well the non-linear orthotropic
behavior of canine carotid arteries under non-shearing loads. Indeed, the success of
this constitutive model is evidenced by its frequent use in the literature [33,38-41].

Others have proposed phenomenological constitutive relations for the arterial
wall that rely on functional behaviors other than exponential. Vorp et al. [42] as-
sumed no particular form for the Hyperelastic strain energy density function used
to model canine carotid arteries and rabbit aortas, but instead assumed that it was
smooth enough to be represented as the Taylor series expansion
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W = A1E11 + A2Ex + A3Es3 + A4E}, + AsETy
+A6E3; + A7E} + AsE3, + AoEZ,
+ArE1n1Exn + A1 E11Ess + A2 Ex Ess (8)
+g (Is— 1) + O(E?)

where I3 = det(F)? is the third invariant of the right Cauchy-Green tensor. In this
way, W takes on a polynomial characteristic, with material parameters A;, A;;, and
k being equivalent to the Taylor series partial derivatives. Vorp et al used Eq. (8) to
model arterial tissue as an orthotropic, isothermal, hyperelastic material. It should
be noted that they chose to model the tissue as compressible, noting Chuong and
Fung’s [43] observation that arterial fluid extrusion through the vessel wall leads to
slight compressibility. Viscoelastic effects and residual stresses were neglected in
the paper, as the focus was determining constants A;, Aj;, and k through a nonlinear
regression of experimental data against the Cauchy stresses derived from Eq. (8).
Vorp et al. used unpublished data from Brant’s experiments, as described in [35],
and from Humphrey’s experiments as described in [44], to this end. Both experi-
mental setups were well validated, and the unloaded ex-vivo configuration of the
arterial segments was used as a reference state. A finite element representation of
the arterial segments was subjected to the experimental loading conditions and a
displacement field was solved using FEM analysis. A dynamic simulation, rather
than a static model, was made that would approach experimental loading conditions
in the large-time limit; this was done for reasons of reduced computational memory
requirements. The constants A;, Aj;, and k were determined through a least-squares
minimization of the disagreement between the experimental displacement field and
that predicted by the FEM analysis. Initially, estimates of the constants were used to
define the FEM model, and regression was performed iteratively using Levenberg-
Marquardt type steps to determine improved estimates of the constants. Figures 4
and 5 in [42] demonstrate the ability of Vorp et al’s technique to characterize the
canine and rabbit arterial responses.

Combined finite element — optimization techniques have been used successfully
in the biomechanics community for characterization of many tissues, including
myocardium [45] and heart valves [46]. In vivo and in vitro imaging can provide
information about the strain states naturally encountered by the tissue, and thus data
to which a theoretical model may be fit, as in [40]. Many techniques for the opti-
mization of material parameters exist, including least-squares fitting and response
surface methods. The details of these methods are beyond the focus of this chapter,
and the interested reader is referred to the literature.

Several adaptations of the generalized Mooney-Rivlin constitutive relation have
been used to represent the response of carotid and coronary arteries. In its general-
ized form, the strain energy density is given by Bathe [47] as

W = Ci(I1 —3) + Co(I — 3) + C3(I1 —3)® + C4(I; —3)(I2 — 3)
+Cs(Is —3)* + Co(I1 —3)* + C7(I1 — 3)*(1, - 3)
+Cs(I1 —3)(I2 — 3)* + Co(I> — 3)> + Dy (eP2173) ) )
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where the C; and D, are constants having units of stress, D, is a dimensionless
material parameter, and /;, 15, and I3 are the first, second and third invariants of the
right Cauchy-Green tensor.

Delfino [19] used a truncated form of Eq.9 first presented by Demiray [48] to
model the human carotid bifurcation. In this implementation, C; = 0 fori = 1-9,
and D; = a/b, D, = b/2, where a and b are material parameters to be fit to exper-
imental data. Delfino tested seven freshly resected disease-free cadaveric common
carotid artery segments, collecting pressure-internal radius and axial force-radius
measurements when the cylindrical specimen was held at axial stretches of 1.05,
1.1, and 1.15. Because the specimens were different sizes, averaging was done on
circumferential and axial distensibility measures D¢ (P) and D 4(F') that accounted
for non-uniform internal radii, ;.

19dS
Dc(P) = ——
c(P) S 3P
19dS
Dy(F)= —— 10a, b
a(F) S 3F (10a, b, ¢)
S=7rrl-2

After establishing average distensibilities, Egs. 10 were integrated to determine an
average pressure-radius and axial force-radius relationships for the healthy carotid
artery. Delfino notes that the final material characterization yielded a strain energy
density function that was polyconvex within a strain range of —0.25-36, which is
important for material and mathematical stability of a constitutive relation, as non-
convexity can lead to singularities and numerical error.

Tang et al have used a different truncation of the generalized Mooney-Rivlin
model to represent both poly-vinyl alcohol hydrogel models of stenotic arteries and
healthy and diseased human carotid arterial wall. The hydrogel is shown to be sim-
ilar in response to healthy bovine carotid arteries in [49]. Tang et al used the form
below and determined the material coefficients ¢, ¢2, D1, and D, by fitting to pub-
lished experimental data [50-53].

W = c1(I; = 3) + ca(ln — 3) + Dy (eP2173 ) (11)

Raghavan et al also used a truncation of the generalized Mooney-Rivlin constitutive
relation to represent a “generic” 1-layer arterial segment in their study of resid-
ual circumferential stress [37]. In this work, the strain energy density function was
given by

W =a(l; —3)+b(; —3)? +c(l; —3)3 (12)

in which a cubic term constitutes an addition to the standard Mooney material. In
order to compare their results to the published results of others, Raghavan et al de-
termined a, b, and ¢ by fitting to the experimental data acquired for rabbit thoracic
aortas by Chuong and Fung [54]. Chuong and Fung’s material model treated the
artery as anisotropic, having different behavior in the radial, circumferential, and
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axial directions. The Mooney-Rivlin model used by Raghavan et al is isotropic, and
thus a systematic approach was made to fit theory to experiment. First, Chuong
and Fung’s model was reduced to an equibiaxial extension case in the 6 and Z
directions, and stress-strain data were generated using their material parameters.
Raghavan et al’s model was also reduced to an equibiaxial extension form (both 6
and Z directions being equal, due to isotropy), and the material parameters for the
0 and Z directions were established through fitting to the stress-strain data derived
from the Chuong and Fung model. The material parameters in the 6 and Z direc-
tions were then averaged to determine the representative isotropic response for the
unspecified artery.

The recent literature contains several other phenomenological constitutive rela-
tions for the healthy arterial wall. Of the hyperelastic models proposed, some use
strain energy functions that have polynomial forms different from those already
discussed, while others use a different sub-form of the generalized Mooney-Rivlin
material. Others, notably the constitutive relation proposed by Takamizawa and
Hayashi [22], are based on a logarithmic form of the strain energy density function.
Humphrey [2] noted that although their material model represents well the response
of the canine carotid artery under certain conditions, Takamizawa and Hayashi’s
model is incapable of strong anisotropy and may not be easily used when shear
stresses are considered. The simple Neo-Hookean formulation, which may be con-
sidered a variant of the Mooney-Rivlin formulation, has also seen abundant use and
will be discussed more in the next section. At least one group [55] has employed a
two-term Ogden model to represent the healthy human carotid artery.

Zhang et al [56] proposed a generalized Hooke’s law to represent the arterial wall.
In their model the authors employ a generalized Hencky strain tensor D, specifically
the logarithmic-exponential strain

D = In(U)e" =3 (13)
to absorb the nonlinearity of the vascular stress-strain relation. In this definition of
strain, U is the right stretch tensor that results from a decomposition of the defor-
mation gradient into a rigid rotation and a pure stretch.

F = RU (14)

In this way, the authors can write the stress-strain relation for the arterial wall as a
generalized three dimensional Hooke’s law. Without shear:

Soe €11 C12 C13 Dgg
Sz | = | c21 22 €23 D (15)
Srr €31 €32 €33 Dy

This approach, although needing ten constants to be specified for a material, reduces
the stress-strain relation to a linear one, and necessitates only one nonlinear term,
n from Eq. (13). Although ten material parameters is more than some other very
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capable constitutive relations, the linear dependence of S on all but one of these
parameters allows very easy and stable linear regression methods to establish their
values for a particular tissue. The authors have shown that the constitutive relation
works well for modeling the response of porcine coronary arteries [57].

Phenomenological constitutive relations have been used extensively in vascular
mechanics research during the past few decades. Their use has allowed the investi-
gation and characterization of the nonlinear mechanical response of various arteries
under normal and pathological conditions. Although many of these material formu-
lations are capable of representing well the mechanical response of an artery, their
(sometimes many) material parameters and fitting constants often do not have a clear
physical interpretation such as Young’s modulus for linear elasticity. Most recently,
constitutive relations are designed with histological structure in mind. The result of
such an approach is often a material formulation with fewer parameters, and a more
clear physical meaning for each parameter. The structural approach also benefits
from direct physical interpretation in that singular behavior and non-convexity is
more easily avoided [58].

The material characterization of Wuyts et al [59] is likely the first comprehensive
structural material formulation made specifically for the arterial wall. The model
itself, and the studies of material properties and their dependence on anatomical
location and age are an important contribution to the literature. The model of [59]
contains many of the salient features of arterial mechanics, but is not easily in-
corporated into a computational approach, and is not easily extended to arbitrary
geometries. Because the remainder of this chapter will focus on recent computa-
tional models of the vasculature, the model of Wuyts et al will not be covered further.
Instead, a phenomenological model with a strong basis in the relevant nonlinear me-
chanics, and a clear computational efficiency, is discussed.

Perhaps the best segue from phenomenological to the most modern structural
constitutive relations is the constitutive relation of Holzapfel and Weizsacker from
[32]. In this paper, the authors present a relation where the strain energy function
is additively split into two parts, one to account for the isotropic response and the
other to account for the anisotropic response.

w = 1/fisa + waniw (16)

In [32] the authors state “The first term of the potential, i.e., Y5, represents the
isotropic contribution (probably stemming from the ‘elastin of the vascular wall’) . ..
The second term, i.e., Yaniso represents the anisotropic contribution (likely from the
‘collagen of the wall’)”. Thus, the constitutive relation is designed to address actual
artery wall materials separately, albeit still using a phenomenological approach. In
Holzapfel and Weizsacker’s strain energy density function, the isotropic response is
modeled as a Neo-Hookean material

1/fisa =1 (Il - 3) (17)

and the strain-stiffening behavior of the anisotropic collagen in the wall is
incorporated through a Fung exponential relation.
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1panim = C2(eQ - 1)
Q = a1E}, + a2E3, + a3E2, +2a4E11 Exy + 2a5E2 E3;3
+2&6E11E33 (18,19)

Normal physiologic loading of a straight arterial segment does not induce shear
stresses, and thus Q is free of shear terms. The authors chose to treat the arterial
wall as a thin membrane, and assumed the membrane was capable only of states
of plane stress. Further, a two-dimensional approach was taken, with a3, as, and
ag equal to zero, and the radial strain E3 is neglected rather than determined by
incompressibility constraints. After these assumptions, Q takes the form

Q = a1 E}) + a2E3, + 2a4 Ev1 Exa (20)

and represents a compressible material. Holzapfel and Weizsacker used their con-
stitutive relation to generate models for both the rat abdominal aorta and tail artery,
an elastic and muscular artery, respectively. Figures 2 and 4 in [32] demonstrate that
although the five-parameter model cannot recreate all features of the stress-strain
behavior of the arteries, the biphasic nature of the elastic aorta is captured well, and
the same model is able to represent the monophasic behavior of the tail artery. The
biphasic response in the circumferential direction of an elastic artery is attributed
to the low-strain response of the elastin content being overcome by the exponential,
strain-stiffening response of collagen content at higher strains. This feature cannot
be captured by an exponential Fung model alone. The authors noted that their two-
term strain energy density function is “promising in the quest of correlating arterial
structure to mechanics” [32], and indeed it ushered in a new, more realistic, class of
structural constitutive relations to represent the arterial wall in a manner well suited
for computational analysis.

In [21], Holzapfel, Gasser, and Ogden introduced a new type of constitutive
relation for the healthy arterial wall. The constitutive relation was designed and
specified by considering the artery wall to be a two-layer structure, as the medial
and adventitial layers are mechanically relevant (in a solids sense) in a healthy
artery, but the intimal layer is not. Each layer is treated as a nonlinearly elastic,
thick walled, orthotropic, incompressible, isothermal fiber reinforced material with
residual strains. Incompressibility is effectively handled by decomposing the strain
energy density function W into a volume-changing component U(J) that depends
on the local volume ratio J, and an isochoric component W. The Cauchy stresses
thus contain a pI term where p is a Lagrange multiplier that can account for the
hydrostatic stress response.

As in [32], the isochoric portion of the strain energy density function of [21] for
each layer is further additively split into an isotropic component and an anisotropic
component. The isotropic component is used to model the non-collagenous material
of the layer, while the anisotropic component models the mechanical response of the
two collagen fiber families that are symmetrically disposed and helically oriented
about the layer’s axis.

U(C,ao1,a02) = Wiso(C) + Waniso(C, @01, an2), (2D
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where ag; and ag; are the reference direction vectors for the two fiber families in
the layer. The isotropic response of each layer is modeled using the neo-Hookean
strain energy density function

by, = g(il —3), (22)

where I is the first invariant of the “isochoric” right Cauchy-Green tensor, C. The
strain energy density function for the anisotropic response in each layer is given by

T T 7 kl ko (I —1)2
“Ijanim 1 5 Ig) = — 2(hi=1)7 _ 1
so(L4. 1) 2k2.Z(e )
i=4,6
14(C,a01) = C : (ap1 ® ao1) (23a, b, ¢)
Is(C,ap2) = C : (ao2 ® ao2)
where k1 has the units of stress and k5 is a dimensionless constant. The two fiber

families per layer are assumed to have the same k; and k5. With respect to Fig. 3,
the statement of the full constitutive problem is

L., _ M F kim Kt (Tipg —1)2
WM—7(11—3)+ Z(e MM — 1)

Zkam S
Ri<R<R +H
iSRERt+ Hy (24a, b)
— CA , = klA k (1_ _1)2
Vy=—(U—-3)++— e 2allid -1
S (I =3) 2m,§6( )
Ri+Hy <R =< Ro
with the fiber direction vectors related to the fiber angles p by
0 0
[ao1;] = | cospB; |. [aozj] =] cosB; |. (25a, b)
sin B —sinf;

The full details and derivation of the constitutive relation are given in [21]. The
authors used rabbit carotid artery data from [30] to determine the material and struc-
tural parameters listed in Fig. 3, while the geometrical properties, referencing both
the stress-free and residually strained states, are taken directly from [18]. c4 was set
to one tenth cy in keeping with the observations in the literature that the isotropic
response of the media is about an order of magnitude stiffer than the adventitia. The
authors note that if /4 or I is equal to or less than 1, that portion of the anisotropic
strain energy density function is not to be incorporated in the full strain energy. This
effectively accounts for the fact that collagen fibers are incapable of supporting com-
pressive stresses. Important for numerical simulation, with compressive stresses left
unsupported by the anisotropic material component, the strain energy density func-
tion is guaranteed to be convex [58].
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Fig. 3 Graphical representation of the two-layer arterial model considered by Holzapfel et al. [21]

The constitutive relation and comprehensive approach of [21] provided a solid
and general foundation on which tremendous progress has been based. The au-
thors of [21] used a similar approach to construct a framework for viscoelasticity in
fiber-reinforced composites in [60]. Although this work focuses on the mechanics
of fiber-reinforced rubber tubes, it is noted that such a formulation for viscoelas-
ticity is easily applicable to the constitutive relation put forth for the arterial wall.
In [61], Gasser and Holzapfel further extended their methods to account for elasto-
plasticity in biological tissue. The authors used a multiplicative decomposition of
the deformation gradient tensor into an elastic component and a plastic deformation
component, in addition to a multiplicative decomposition of the deformation into
spherical dilation and unimodular components. Using an elastic predictor-plastic
corrector method, and a backwards Euler scheme to integrate the flow rule, the
authors implemented multisurface plasticity into their fiber-reinforced composite
material formulation. The utility of such a model in investigations of translumi-
nal percutaneous angioplasty will be discussed in a later section of this chapter.
In [62], the same authors modified the anisotropic portion of the strain energy
density function from [21, 58] to accurately model human coronary arteries with
non-atherosclerotic thickening of the intima. This work required the straightforward
extension of their previous investigations to model the vessel wall as a three-layer
fiber reinforced composite, as a thickened intima can play a large role in the vessel’s
mechanical response. In [3] Gasser, Ogden, and Holzapfel also extended the ma-
terial formulation to account for the directional dispersion of collagen fibers in
the artery wall. This is important in the intima and adventitia, where unlike the
media, collagen fibers are oriented much less strictly with respect to the average
direction vector. The authors used an orientation density function, incorporated as a
generalized structure tensor. For the dispersion considered, the generalized structure
tensor is described by a scalar dispersion parameter k and is thus easily incorporated
into a finite element approach. A transversely isotropic von Mises distribution was
employed to describe the actual dispersion in each layer. The limiting cases of the
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dispersion, k = 0 and k = 1/3 were shown to reduce to the parallel fiber [21] and
isotropic (similar to [19]) constitutive relations, respectively. Kroon and Holzapfel
[63] have recently extended this body of work to model n—layer collagenous ma-
terials. Such a model would be immensely useful in studying, among other tissues,
cerebral aneurysms, where the arterial wall is often a thin, multi-layered composite
of collagen “fabrics” of varying mean fiber orientation as noted in [2].

The general ideas presented in [21,32,41,60,61], among other works, have been
the starting point for many additional studies into structural constitutive modeling
of the arterial wall. The balance between phenomenological content and structural
content varies amongst recent work, and is dictated by the study’s desired level of
accuracy and detail. Zulliger et al, in [64], used the idea of an additive decomposi-
tion of the strain energy density function into isotropic and anisotropic components.
Their study investigated using strain energy density functions for each component,
Viso and Y50, that were based more completely on the histological structure of the
arterial wall. The authors weighed the contributions of the isotropic and anisotropic
strain energy density functions by the cross sectional area fractions of elastin and
collagen, feast and feon, respectively. The nonlinearity of the isotropic strain energy
density function was enhanced from that in [21] to fit experimental data, noting that
while elastin may be a linearly elastic material, interaction between fibers can lead
to nonlinear behavior.

wiw = felastwelast = felastcelust(ll - 3)3/2 (26)

It should be noted that Zulliger at al cited Milnor [65] in treating the elastin matrix
to behave nonlinearly, while Wuyts et al [59] cite Carton [66] in treating the elastin
of the media to be Hookean up to large strains. Clearly, more work needs to be done
to understand the full behavior of elastin fibers and structures, and there may be no
one best way to characterize the elastin content of the vessel wall.

To account for the collagen fiber content of the arterial wall, Zulliger et al noted
that collagen fibers in an ensemble do not all begin to support stress at the same
macroscopic strain. This is due to the non-uniform crimping and lengths of the col-
lagen fibers in the arterial wall. The authors used an idea from earlier literature,
including [59], that there exists a statistical distribution of engagement strain for
the fiber ensemble. Characterizing this engagement strain distribution pj.- as a log-
logistic model, the authors used a convolution integral to relate the strain energy
function of a single fiber to that of the entire ensemble in the wall tissue.

Veotl(€) = Wy ier = / Wter (X) - Prver(e — x)dx @7)

The authors fit their model to experimental data from the medial layer of rat carotid
arteries and compared their model predictions to those obtained using the strain
energy density functions from Chuong and Fung [18], and Holzapfel et al [21].
While the predictions from the strain energy function of [18] were the best fit to
the data overall, the model’s predictions in strain states where collagen bears more
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load are not a good fit. The strain energy density function put forth by Zulliger et
al provided an overall better fit than that proposed in [21], but the predictions in
the high strain region were still not entirely satisfactory. The author’s choice of a
log-logistic engagement strain distribution was noted to be “fairly arbitrary,” as a
lower bound to the distribution is the only non-statistical requirement. A different
choice of distribution function and accounting for collagen fiber directional disper-
sion might improve the model. Recently, Roy et al [67] used a modification of the
constitutive formulation from [64] as a platform to investigate the nature of elastin
in the arterial wall. They found that a majority of the elastin content of the wall is
in series with smooth muscle cells, the remainder acting in parallel. This is shown
to have important implications on the true nature of the zero-stress state, commonly
accepted as the state of an arterial segment after a radial cut. Although the paper will
not be covered in detail here, the work of Ogden and Saccomandi [68] incorporates
mesoscopic information on the extensibility of collagen and elastin fibers into the
macroscopic constitutive relations for the arterial wall. In [68], the limiting chain ex-
tensibility of the two fiber types is incorporated using the Gent or “Fung-Demiray”
(see Eq. (36)) models for the isotropic component of the strain energy density func-
tion. Adding these isotropic functions to the anisotropic Horgan-Saccomandi or
Holzapfel (see Egs. (23a, b, ¢)) strain energy density functions, respectively, gives
two different additively split strain energy functions, as in Eq. (16), capable of repre-
senting both the arterial and rubber tube inflation-extension response. This approach
affords a clear manner in which to address the quality and strain-stiffening response
of fiber families, which may prove useful in more recent models that incorporate the
effects of ageing and remodeling.

4 Mechanics Studies of Non-Atheromatous Arteries

The modern computational mechanics analysis of a healthy artery comprises sev-
eral components. Constitutive relations, as we have seen, take on several different
forms within both the phenomenological and structural frameworks. Certain rela-
tions are able to represent very accurately the distinct mechanical responses of the
layers of the healthy arterial wall, while others provide a stress-strain relation that
characterizes the response of the entire wall thickness in a comprehensive manner.
Anisotropy, non-linearity, and viscoelasticity are addressed to varying degrees, and
are incorporated in different models using different strategies. All of this has led
to a wide range of material formulations in terms of accuracy, computational cost,
material and mathematical stability, and applicability to complex geometries.

In addition to the constitutive relations used to represent the arterial wall, the
vessel geometry, boundary conditions and loading scheme define the arterial sys-
tem to be analyzed. While the mathematical techniques used in modern vascular
mechanics studies are equally important to the aforementioned model parameters, a
rigorous discussion is beyond the focus of this chapter, and only the major features
of common approaches will be covered.
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4.1 Healthy Geometry, Healthy Material

Most studies made of healthy vessels concern themselves with idealized geome-
tries. A circularly cylindrical, non-branching segment with boundary constraints
that exploit symmetry is most common in the literature, and represents portions
of many healthy arteries quite well. The single- or multi-layered models of straight,
non-stenotic arterial segments are most often used to develop and test constitutive
relations for the artery wall. When the constitutive relation is shown to predict exper-
imental loading and strain data with acceptable accuracy, the model can be used to
quantify the stresses within the healthy arterial wall. Although the action of the heart
and viscous blood flow are what impart force (besides residual stresses) on the artery
wall, the pressure drop across a healthy arterial segment is normally very small,
and uniform pressure loading is an often-employed and well-justified assumption in
static or quasi-static analyses. The wall shear stress felt by the intimal surface of the
vessel wall is certainly biologically relevant, but is orders of magnitude smaller than
the stresses imparted by systemic pressure in most healthy, non-stenotic vessels.
For many of these arteries, shear stresses can be predicted with reasonable accuracy
using computational fluid dynamic models that do not explicitly model the mechan-
ical response of the artery wall. More advanced methods that couple fluid and solid
mechanics are possible for this calculation, and will be discussed later.

The studies referenced in the previous section of this chapter provide many fine
examples of non-atheromatous arterial wall stress calculations in idealized geome-
tries. Although many vascular mechanics studies use finite element methods to
calculate stresses and strains, the studies of the previous section generally rely on
analytical methods when formulating and testing constitutive relations. An excellent
analytical study of healthy arterial mechanics is provided by Humphrey and Na in
[33]. In that paper, the authors examine the circumferential, axial, and radial stresses
in an idealized vessel segment modeled using a strain energy density function
adapted from that of Chuong and Fung [18]. Material parameters were also obtained
from [18], and thus the model was an idealized rabbit common carotid artery. The
authors considered the effects of flow-induced wall shear stress (although not in-
cluded in their final calculations), perivascular tethering, mechanical anisotropy and
material nonlinearity. Additionally, the authors explored the implications of smooth
muscle activation, using the approach of Rachev and Hayashi [69]. It should be
noted that nearly every arterial mechanics study assumes that the vascular smooth
muscle is in a fully passive state.

Aside from constitutive model design and testing, and healthy artery stress calcu-
lations, the idealized vessel segment model is employed in studies of residual stress
and supraphysiologic loading. For these types of studies, finite element methods are
typically employed, as geometrical and material nonlinearity are present. Raghavan
et al [37] employed an idealized vessel segment model to study the effects of seg-
ment length and “circularity” on residual stress calculations. A common approach
in the literature to calculate residual stresses begins with a radial cut to a vessel seg-
ment and measurement of the opening angle and inner and outer radii of the open
sector. This data, combined with an assumption of constant axial stretch allows for
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an analytical calculation of residual stress throughout the artery wall, as shown in
[18,54]. This method effectively calculates the stresses in the wall that result from
re-joining the cut ends of the open sector. The assumption of constant axial stretch
works well for experimental observation of a small central segment of a lengthy
artery, but segments for which opening angle and radii data are typically collected
may not be lengthy enough to justify the assumption. End effects may render the
constant axial stretch assumption invalid when the specimen length is small, which
would lead to distorted residual stress calculations. Raghavan et al constructed a
structured finite element mesh of an idealized open sector and performed numerical
experiments to determine how specimen length effected residual stress calculations.
In their model, Raghavan et al discretized the open sector with eight-node hexa-
hedral elements that use linear shape functions. The model solved for elemental
stresses using a mixed finite element formulation to account for the assumption of
incompressibility. The analysis showed that an experimental specimen for which
residuals stresses would be analytically or numerically calculated should be at least
ten times longer than the thickness of the wall to avoid end effects.

Another common assumption in the calculation of residual stresses in arterial
segments is that the open sector is a portion of a circular annulus. This simple geom-
etry allows for the easy calculation of residual stresses based on the aforementioned
opening angle and radii measurements. Experimentally, the radially cut artery seg-
ments are not quite circular in nature, and thus such an assumption may distort the
calculated residual stresses. Also in [37], Raghavan et al explored the implications
of the “circularity” assumption by comparing the residual stresses predicted for a
discretization of a real arterial segment to those predicted for an idealized, circular
segment of similar dimensions. The authors built an unstructured hexahedral mesh
from digitized geometrical data of a radially cut porcine femoral artery. A structured
mesh was built for an idealized open sector that was designed to have the same open-
ing angle, wall thickness, and mesh volume as the unstructured mesh, thus serving
as a control. The same finite element procedure of “rejoining” the cut ends was used
to calculate the residual stresses for each model. The authors reported circumferen-
tial variations in the stresses predicted for the real artery, due to non-circularity and
variations in wall thickness. The “closed,” residually stressed meshes were analyzed
in 15° sectors after normalizing for local wall thickness. The authors found that the
residual circumferential stresses for the control geometry were consistently within
a standard deviation of the stresses from the real, noncircular geometry.

4.2 High Pressure Response

A severely stenotic artery might warrant transluminal percutaneous angioplasty to
restore lumen patency. In angioplasty, a balloon catheter is inserted into the vessel
lumen and the balloon is expanded in the location of the stenosis. Inflation of the
balloon to pressures several times greater than the systemic pressure leads to a “con-
trolled vessel injury” wherein atherosclerotic plaque materials may be redistributed
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in the vessel wall, and non-diseased tissues of the wall are overstretched. The over-
stretching of non-diseased arterial tissues causes an inelastic response and some
portion of the deformation is non-recoverable. The damage from overstretch main-
tains the increased patency of the vessel, and blood flow can return to a more normal
state. Holzapfel and Gasser employed their elastoplastic fiber reinforced composite
material model from [61] to simulate the overstretching of a left anterior descend-
ing coronary artery due to an internal pressure load of 100 kPa, roughly eight times
normal mean systemic pressure [70]. This material model is phenomenological and
is based upon an idea of collagen fibers “slipping” in the matrix, and material hard-
ening effects are considered. Geometrical and opening angle data for the media
and adventitia was taken from a previous study, and was used to account for resid-
ual stresses in the two-layered model. The idealized geometry was discretized using
QI1PO eight-node hexahedra, and loading was considered to be uniform. In the study,
the authors first determined the wall stresses in the no-load, residually stressed
state, then calculated wall stresses at physiological (100 mmHg) and supraphysi-
ologic loading (750 mmHg). Upon relaxation of loading from supraphysiologic to
physiological levels, a permanent deformation in the tissue was apparent, and the in-
ternal radius of the vessel increased by 0.158 mm, or nearly 5%. The wall stresses at
physiological pressure were shown to be significantly altered after supraphysiologic
loading, and the gradient of the circumferential stress through the media reversed
sign. Although angioplasty is performed on vessels of irregular shape and composi-
tion, due to atherosclerotic changes, the inelastic deformation of remaining healthy
tissues is seen experimentally to be an important factor in procedure outcome. Thus,
this geometrically and compositionally simple model is a sound first step toward
models that address more realistic features of a diseased, stenotic artery undergoing
angioplasty. Such models will be addressed in a later section of this chapter.

5 Fluid-Structure Interaction

The pressure drop across a short segment of a typical large artery (aorta, subclavian,
carotid, iliac, etc.) is normally quite small, on the order of 10 Pa/cm (compared to
13,322 Pa systemic pressure) in the common carotid artery at peak systole. Thus,
for a straight arterial segment of fairly constant luminal diameter, a uniform pressure
load is a reasonable approximation. When the luminal diameter is focally narrowed,
called stenosis, the pressure drop associated with the same flow rate can be much
greater. In this case, the assumption of a uniform pressure load is often not justified,
as the wall stresses of interest are often in the region where the pressure perturba-
tion is greatest. To make an accurate analysis of wall stresses for these cases, the
pressure field should be specified using either comprehensive experimental data, or
information provided from a computational fluid dynamics simulation.

Obtaining an experimental mapping of arterial pressure is fraught with diffi-
culty, as either an invasive procedure is required of the patient, or a complicated
experiment is performed in which medical images of the vessel are used to create
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a physical model on which pressure measurements are made. Even if either of
these methods are used, a comprehensive mapping of the pressure field is not fea-
sible in most interesting cases, as we know that arterial pressure is a complicated,
time-dependent, three-dimensional field with sometimes-sharp spatial and tempo-
ral gradients. Additionally, although the flow-induced shear stresses are often much
smaller than systemic pressures, it is impossible to capture these in a comprehensive
sense as well. Such problems also arise in studies of idealized geometries. For these
reasons, computational fluid dynamics (CFD) methods are increasingly employed
to establish the correct loading on the luminal surface of an artery, so that accurate
stresses may be calculated within the vessel wall.

In the simplest implementation of CFD results into a solid mechanics compu-
tation, the data of the pressure field and wall tractions from a rigid-walled CFD
simulation is mapped to the inner wall of the solid model geometry. The spatial
discretizations of the fluid and solid domains, €2 and €25, may be identical at the
fluid-solid interface, or they may be different. In the case where the same discretiza-
tion is used for both domains at the shared interface, a node-by-node passage of
fluid variables to the solid models occurs. If the discretizations are different, an
interpolation is made between the meshes, while some rule is put into place to
ensure consistent integration of loads over the domains. From the natural geom-
etry of the problem, it is obvious that 2y and €2; must lie within some tolerable
distance ¢ of each other, such that their real-world contact is modeled. As just de-
scribed, this is the traditional “one-way” or “weak” coupling scheme, in which fluid
variables are passed only once to €2, and then the FEM solver is run to calculate
stresses and strains on §25. Such a method works well for problems where the solid
displacements are very small, and the deformed solid domain does not indicate an
appreciable change of the boundary of the fluid domain, and therefore the CFD
solutions. This method assumes a fluid-structure equilibrium is directly achieved,
and there is no iteration between fluid and solid solutions to establish a rigorous,
multi-domain equilibrium. The benefit of using such “weak” coupling is that fully
separate solvers may be used for solid FEM solutions and CFD solutions, as long
as an effective passage of variables occurs. Memory requirements for this approach
are also little more than those of the separate solid and fluid solvers. The “one-way”
coupling approach is often used in industrial applications, where solids are made of
very stiff metals or composites and do not deform much under fluid load. Because
we know that the typical blood vessel displays a nonlinear mechanical response and
undergoes large deformations, “one-way” schemes are not appropriate, although
they were used in the past due to computational constraints.

There are two alternative methods by which fluid and solid domains may be
coupled in multiphysics finite element simulations, the direct method and the parti-
tioned method. Both approaches are capable of strong coupling between Q¢ and €2,
such that a rigorous multi-domain equilibrium can be achieved in static or dynamic
simulations. In the “direct” method of solving coupled fluid-structure problems, a
single system of equations representing the fully coupled problem is constructed
using a finite element discretization procedure. The entire system, which is necessar-
ily characterized by a non-symmetric coefficient matrix due to the fluid equations,
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is then solved using standard methods applicable to non-symmetric systems. Most
problems in vascular mechanics involve geometrical discretizations that result in
a large number of fluid and solid elements, and thus the number of equations to
be solved simultaneously using the direct method can become quite large. Due to
prohibitive computational memory requirements, the direct method for solving a
strongly coupled fluid-structure problem is often not preferred, and a partitioned
scheme is employed.

The partition method for solving fluid-structure interaction problems is an exten-
sion of the “one way”’ coupling method, and the basic approach is easily understood.
The problem is characterized by three domains, Qy, Q5, and Q2¢, where Q2 is the
interface between the fluid and solid domains; in the typical three-dimensional vas-
cular simulations, Qg is the three-dimensional surface where blood contacts the
artery wall. The physics of the solid domain are the standard equations of motion in
a Lagrangian frame.

0%u v

Pz =V Tt I8 (28)
where p, u, T, and f 5 are the local material density, displacement vector, Cauchy
stress tensor, and body force vector. In many vascular mechanics fluid-structure
interaction models, blood is considered to be an incompressible, isothermal,
Newtonian fluid. In this case the equations of motion, the Navier-Stokes equa-
tions, are written as

v

p5+pv-Vv—V-r=fB

Vv=0

(29,30)

where v is the local fluid velocity vector and t is the fluid stress tensor. As writ-
ten, these equations are suitable for describing flow in an Eulerian frame. In FSI
simulations, where the fluid domain is capable of deformation, and the computa-
tional mesh is not static, the arbitrary Lagrangian-Eulerian (ALE) frame is used to
analyze flow. The ALE frame is intermediate between the “material-following” La-
grangian frame and the “spatial reference” Eulerian frame, and is characterized by
an ALE frame velocity v’ [71]. In an ALE frame, the Navier-Stokes equations are
written as

d
pa—‘;—l—p[(v—v/)~V]v—V~r = fp
(31,32)

Viv=0

Of course, we cannot hope to solve these equations without the application of suit-
able constitutive relations for the solid (we’ve assumed the fluid to be Newtonian),
as well as physically meaningful boundary conditions. In an FSI simulation there
are several different boundaries over which different conditions must be satisfied.
On the purely solid boundaries, where there is no contact with the fluid domain,
we have
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u =ur, only (33,34)
t-n=fr,only

where I', and I’y are the subsets of the purely-solid boundary where displacement
and traction conditions are specified, respectively. Statements of the boundary con-
ditions at the purely-fluid boundaries, where there is no contact with the solid
domain, are more complex in the ALE frame. In the typical vascular mechanics FSI
simulation, these boundaries comprise zones where velocities are specified, pres-
sures are specified, or a more complicated (but more realistic) impedance function
is specified. These zones do not overlap, and thus do not over-specify the prob-
lem. At the fluid-structure interface, I't, the following boundary conditions must
be satisfied

us =u
s =v (35a, b, c, d)
iy = v

Ty R=7Tf-N

where ug and u’ are the solid and ALE displacement vectors, v is the fluid velocity, T
are stress tensors, subscript s denotes “solid”, subscript f denotes “fluid”, overscript
dots denote time derivatives, and n are outward normal unit vectors. It should be
noted that at Iy, the fluid velocity and the ALE frame velocity are equivalent. These
conditions ensure that the fluid and solid domains remain in contact (appropriate for
blood vessels), that a no-slip condition is enforced, and that Newton’s third law is
obeyed.

The basic solution strategy using the partitioned method is to first solve the fluid
problem subject to the fluid-only boundary conditions, and the initial displacement,
velocity and traction conditions on I't;. When the velocity and pressure fields are
known, traction vectors are calculated at I'g;, and are used as force boundary con-
ditions on the solid domain. The force boundary conditions from the fluid tractions,
and the solid-only boundary conditions are used to solve the solid system for the
solid displacement and velocity fields. The displacements and velocities of the solid
domain at I'g; are used to deform the fluid mesh at I'g;, and one of many schemes is
used to adjust the interior nodal positions in the fluid mesh to maintain mesh quality.
When the fluid mesh has been updated in terms of nodal positions and displacement
and velocity boundary conditions, the fluid system is solved again. This entire pro-
cedure is iterated until convergence is reached in the solution vectors for the fluid
and solid domains. This is done for every time step of the simulation.

As in the “one way” weak coupling method, the discretizations of the solid and
fluid domains do not need to be identical at I'g;. This is advantageous to the FEM
user, as a much finer computational grid is often warranted in parts of the fluid
domain, and would lead to excessive computation time and memory requirements
in solving the solid system. There are many variations on this basic solution scheme,
and several research and commercial finite element codes are capable of solving FSI
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problems. The interested reader is pointed to [72,73] for a more complete treatment
of the theory and practical solution of these complicated and useful initial boundary
value problems.

5.1 Stenotic Geometry, Healthy Material

One of the simplest vascular mechanics problems for which FSI simulation is truly
needed is the simulation of flow through an idealized, single-layer, non-branching
stenotic artery, such as the one shown in Fig. 4.

Because of this problem’s material and geometrical simplicity, and its good ap-
proximation to a condition of biological relevance, several groups have studied this
system experimentally and numerically. In the interest of brevity, only a few studies
by Tang, Yang, Ku, et al, who have made extensive numerical analysis of this sys-
tem, will be presented. For a more complete background of this problem, the reader
is referred to the references in [74-77].

In [75] Tang et al studied a thin walled stenotic model, using a commercial finite
element code to achieve a strongly coupled steady-flow FSI solution. The authors
sought to identify the effects of stenosis severity and asymmetry on wall shear stress
and the fluid pressure field, which was known to be complicated in stenotic geome-
tries. Of particular interest to the authors were the critical flow conditions that might
lead to vessel collapse due to severe pressure drop across the stenotic throat. The
computational wall model was based on dimensions (78% stenosis by diameter) and
material response of a silicone tube used in steady-flow experiments. The authors
used a radial expression of the tube law, and Laplace’s law to derive stress-strain
relationships for the stenotic throat and segments proximal and distal to the throat,
based on experimental observation. The stress-strain data were fit with a two-term
Ogden model using a least squares approach; material homogeneity and incompress-
ibility was assumed. The solid domain was discretized with eight-node hexahedra,
and the fluid domain with six-node prismatic elements. The solid field equations
assumed large displacements and the fluid domain referenced an ALE frame.
Although the numerical model was based on a silicone experimental model, dimen-
sions and flow boundary conditions were appropriate for flow in a carotid artery.

The authors analyzed the flow and wall displacement for stenoses between 20%
and 90% that were 0% or 100% eccentric, using an inlet pressure of 100 mmHg
and full-segment pressure drops of 10—100 mmHg. The data presented in the paper

Fig. 4 FEM mesh of stenotic artery as used in Tang et al. [74]
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were for 50% and 78% stenoses, using outlet pressures of 20 and 0 mmHg, which
is in the physiological range of carotid stump pressures measured intraoperatively
and reported by Hafner [78]. The studies demonstrated good agreement between
numerical and experimental measures of volumetric flow rate versus total pressure
drop, and showed the strong influence of stenosis severity and eccentricity on flow
conditions. Under an equal outlet pressure condition, the magnitude of the (nega-
tive) minimum pressure at the throat, and the maximum wall shear stress were 36%
and over 100% larger in the case of greater stenosis, while maximum flow velocities
were similar. At constant flow rate, the maximum flow velocity in the lesser steno-
sis was about one sixth that of the more stenotic model. The maximum wall shear
stress of the lesser stenosis dropped to less than a tenth of that of the more stenotic
model, and the minimum pressure was no longer negativel; it was only about 2.5
mmHg below the outlet pressure. Loss of symmetry led to a lower minimum pres-
sure at the stenotic throat and could represent an increased risk of arterial collapse.
The maximum wall shear stress in the 100% eccentric model was 50% higher than
that of the symmetric model, and can be easily understood considering the strong
flow jet along the wall in that case. All models, symmetric or not, showed that the
pressure and shear fields were complicated and three-dimensional. Similar studies
were made in [74] for thick-walled models. The results were similar, but the stud-
ies focused more on quantifying the wall stresses due to the complex pressure field
throughout the geometry.

Although both [74, 75] sought to characterize the critical flow conditions that
could lead to vessel collapse at or just distal to the stenotic throat, neither study
was well suited to predict this portion of the mechanical response. In [74,75], the
tube law was voiced in a specific radial form and maintenance of a circular lumen
was implicitly assumed. This is contrary to experimental observations, where a pro-
nounced loss of lumen symmetry accompanies vessel buckling. In [49], Tang et
al performed numerical and experimental studies on a stenotic model made of a
poly-vinyl alcohol (PVA) hydrogel. The PVA hydrogel was shown by to have a me-
chanical response similar to that of bovine carotid arteries [79]. In [49], the authors
used an experimental tube law which does not directly specify the radius, nor make
assumptions of maintained symmetry. Thus, the incrementally linear stress-strain
relation derived from experimental pressure-area data was capable of better repre-
senting the response of the vessel under compressive stresses and in buckling or
collapse conditions. Among the advantages of using the PVA hydrogel model was
the ability to apply a physiological axial pre-stretch of 36.5%, where the silicone
model of [75] was limited to a stretch of 2.4%. The authors used a generalized fi-
nite difference scheme to solve the fluid equations, a finite element method to solve
the wall mechanics, and an incremental boundary iteration method to handle the
fluid-structure interaction. Results were qualitatively similar to those in [74, 75],
but the response under buckling and collapse conditions was much more realistic
and compressive stresses were calculated more accurately. Again, comparison be-
tween 80% and a 50% stenosis models at the same flow rate demonstrated immense
differences in shear stress magnitudes, maximum flow velocities, pressure minima
and total segment pressure drops. Additionally, there were no compressive stresses
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for the less severe stenosis, and the maximum compressive stress in the more se-
vere stenosis was about 60% of the maximal tensile wall stress. In [77],Tang et al
performed a series of similar numerical and experimental simulations on asymmet-
ric, stenotic PVA hydrogel models. In this work, the authors performed mechanical
testing on the isotropic, incompressible material in both tension and compression.
The experimental data was used to fit a four-term Mooney-Rivlin material model,
which represented the material response quite well even down to stretch ratios of
0.7. The use of a fully nonlinear material formulation, based upon direct experi-
mental compression data allowed the authors to accurately study the deformation of
the stenotic tube when pressures became negative at the stenotic throat. The many
figures and data tables of [77] present a comprehensive stress and flow analysis of
the stenotic model, and the interested reader is referred to the original work for a
complete description.

6 Carotid Bifurcation

As explained in chapter 5, atherosclerosis is a focal disease that preferentially affects
regions of the vasculature where disturbed flow or pronounced curvature are present.
A detailed account of atherogenesis, from biological and mechanical perspectives
can be found in chapter 5 and references later in this chapter. Because of its focal
nature, and the ease (in some vessels) with which advanced lesions can be detected
at autopsy, we have for a long time known about the common sites of atherosclerotic
disease. Among the most common sites is the carotid bifurcation. The left and right
common carotid arteries normally arise from the aortic arch and the brachiocephalic
trunk, respectively, and continue without branching until approximately the level of
the fourth cervical vertebra. At this level, each common carotid bifurcates into an
internal carotid artery that supplies blood to the brain, and an external carotid artery
that supplies more superficial anatomy. The representative dimensions of the carotid
bifurcation are shown in Fig. 5. Note the widening of the internal carotid just distal
to the bifurcation. This region, the carotid sinus, contains baroreceptors that detect
and thus help regulate the systemic blood pressure. Because of the focal widening,
and resulting flow patterns, the carotid sinus is a common site of atherosclerosis.
The carotid bifurcation is among the vascular segments most studied by clini-
cians and scientists investigating atherosclerosis, for at least four reasons. First, the
bifurcation is a very common site for atherosclerosis and ischemic stroke is often
caused by carotid disease. Second, at a depth of about 3 cm below the skin and re-
maining relatively still throughout the cardiac cycle, the bifurcation is better suited
to medical imaging studies than other sites (i.e., the coronary arteries). Third, a
definitive treatment for advanced carotid disease is carotid endarterectomy, a pro-
cedure that resects the diseased portion of the vessel, thus providing specimens for
histological analysis. Fourth, the carotid’s relatively little motion through the cardiac
cycle makes it amenable to numerical modeling, as displacement boundary condi-
tions are easily established and enforced. Because a great deal of vascular mechanics
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modeling focuses on healthy or diseased portions of the carotid bifurcation, or on the
entire structure, many of the remaining segments of this chapter will present studies
on this region of the vasculature. The modeling techniques described, from imag-
ing to segmentation, solid modeling, and analysis are not exclusive to the carotid
bifurcation, and may be employed for other vascular investigations.

6.1 Healthy Carotid Bifurcation, Measurement-Based

Early studies of the carotid bifurcation were dedicated to flow analysis, and many
features of these works were presented in the last chapter. Patterns of primary and
secondary flow, and characterizations of wall shear stress were the focus of such
work, as they were suspected to relate to the initiation of atherosclerosis. In or-
der to more accurately predict flow patterns, and to shed light on the mechanics
of the vessel wall, some investigators started to employ compliant artery walls in
their bifurcation models. In [80], Perktold and Rappitsch coupled their 3-D flow
model of an idealized carotid bifurcation to a geometrically nonlinear, incremen-
tally linearly elastic, isotropic, nearly-incompressible shell model of the bifurcation
wall. The geometry of the model was that of Ku et al. [81], and was based upon
biplane angiography data from 57 patients aged 34—77. The 3-D Navier Stokes for
incompressible, non-Newtonian flow were solved using a stabilized Galerkin finite
element scheme, and the wall was loaded by the fluid pressure field through an
iterative procedure at every time step of the cardiac cycle. The fluid domain was
discretized with eight-node hexahedra tri-linear in velocity and piecewise constant
in pressure. The shell model comprised four-node, reduced integration quadrilateral
elements, with hourglass control. The shell thickness varied throughout the model
to account for variable wall thickness in the real artery, and viscous stresses were
not accounted for in wall loading. Although the wall model was rather simplified
and the stress magnitudes could not be validated, the simulations revealed some im-
portant characteristics of carotid bifurcation mechanics. Tangential displacement of
the shells was found to be small compared to the normal displacement, as expected,
and maximal normal displacement was found in a small region centered on the flow
divider. The stresses were calculated at the shell mid-surface, and were most signif-
icant at the apex of the bifurcation. The stress concentration factor, defined as local
stress divided by nominal stress at the proximal common carotid, was 6.3 at the
apex, and the stress gradients were large in the surrounding region. At the point of
greatest normal displacement, the stress was surprisingly low and this was attributed
to a stretchless membrane deformation.

In [82], Salzar et al studied the wall stresses in the carotid bifurcation to in-
vestigate their hypothesis that development of atherosclerosis is related to elevated
intramural stresses. Other work had previously shown that low and oscillating wall
shear stress was positively correlated to the development of atherosclerosis, and that
high-shear, laminar flow was possibly atheroprotective.’> The apex of the carotid

3 See chapter 5.
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bifurcation is generally a high-shear, laminar flow environment, and thus further
investigation was needed to understand why this region was a fairly common site
of atherosclerosis. Salzar et al performed a comprehensive analysis of the geomet-
rical features of the carotid bifurcation by studying six cadaveric specimens, 76
angiograms, and ultrasound and MRI data. With a firm grasp of the normal vari-
ation of bifurcation geometry, the authors used photo-magnified visual data and
measured silicone casts from two carotid bifurcations to build their finite element
models. The 3-D geometries were divided by a noted approximate symmetry plane
defined roughly by the centerlines of the common, internal, and external carotid
arteries. The “half wall” geometries were discretized into surfaces of higher order
shell elements, and the shell thickness was allowed to vary throughout the models
to match the specimens. A normal pulse-pressure load of 40 mmHg was applied to
the inner surface of the shell models, with the assumption that the material response
was incrementally linear over this range and the stress patterns would be similar to
those over the normal 80-120 mmHg physiological range. The wall was assumed
to be incompressible and a parameter study was done over the range of incremental
moduli of 14 x 10% — 62 x 106 dyn/ cm? published by Fung [83]. The authors calcu-
lated the mid-shell surface stresses over the geometry, and found an extreme stress
concentration at the bifurcation apex. In addition to the high first principal (circum-
ferential) stress magnitude at the apex, the spatial gradient of the stress was also
noted to be very high. The stress concentration factor, defined as local first principal
stress divided by nominal first principal stress at the proximal common carotid, was
9.2 and 14.2 at the apex for the two models. In addition to the stress concentration
at the apex of each model, the outer wall of the carotid sinus was shown to be under
higher than nominal stress, with stress concentration factors of 3.3 and 4.4 in the
two models. The spatial gradients of these stress concentrations were not as steep
as those at the apices, and a greater area of the wall was under elevated stress at the
sinus. The authors noted that typical lesions of the bulb are large and well devel-
oped while those at the apex are more focal in nature, perhaps relating to the stress
peaks and their gradients. Salzar et al. also noted that the remainders of each model,
besides the apex and sinus, were near the nominal stress level, and atherosclerosis
develops outside of the apex and sinus regions to a lesser extent. Although the au-
thors stated that the stress patterns did not change much on modifying the overall
wall thickness, no sensitivity analysis was made on the wall mesh, and thus only
very qualitative results were obtained in this study.

The studies by Perktold et al [80] and Salzar et al [82] were important develop-
ments in investigations of carotid bifurcation mechanics, and were the basis for more
advanced work. Because of the shell model formulation of the bifurcation wall, and
the assumptions about material response, however, neither study was able to reliably
calculate wall stresses in these complex geometries of variable thickness. One year
after the publication of [80, 82], Delfino published a Ph.D. dissertation [19] which
was, until that point, the most comprehensive stress analysis of the human carotid
bifurcation. In the dissertation, Delfino used seven cadaveric carotid bifurcations in
the unloaded state to make experimental observations and define an “average” finite
element model of the bifurcations. Pressure-radius and axial force-radius data was
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used to define the parameters a = 44.24623 kPa and b = 5434.8 in the Demiray-type
strain energy density function presented earlier in this chapter.

W= % (e%(’l—” _ 1) (36)

Geometrical data on the specimens, and from other studies provided the basis (see
Fig.5) for the 3-D bifurcation model without residual strains. The 3-D geometry of
the model is shown in Fig. 6.

The model was discretized with eight-node hexahedra using a large displace-
ment, mixed finite element formulation. The material was treated as isothermal,
isotropic, homogeneous, hyperelastic, and incompressible. The thickness of the wall
was meshed with five elements throughout the model. Using a commercial finite el-
ement code, an axial stretch of 10% was imposed at the cut-surfaces of the internal
and external carotid artery branches to match the in vivo condition. The cut-surface

position thickness radius r;
[mm] [mm]
Arc length Distance [mm] N 0.9 31
A 6 B 0.6 3.1
BC 5 - g
CD 5 C 0.6 33
DE 25 D 0.55 33
EF 25 E 052 315
rG %3 F 0.49 2.7
GH 6
BI 6.5 G 0.43 2.2
1J 15 H 0.4 2.2
I 0.6 1.83
J 0.4 1.83

Fig. 5 Representative geometry of the human carotid bifurcation, as determined in [19]

Fig. 6 3-D geometry of human carotid bifurcation (without residual strains) designed by Delfino
[19]
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of common carotid was held fixed in the local axial direction. With local cylindrical
reference frames defined at the cut-surface of each branch, all branch ends were con-
strained in the axial and circumferential directions after the initial axial stretch was
applied, and only radial displacement was allowed. At this point, a 120 mmHg pres-
sure load was applied to the interior face of the full bifurcation model to simulate
peak systolic pressure.

Similar to the findings of [80, 82], the highest first principal stress, 655 kPa, was
located on the inner wall surface in the region of the bifurcation’s apex, approx-
imately 2 mm from the plane of symmetry. Unlike the earlier findings, however,
Delfino’s model utilized a fully three-dimensional element and could more accu-
rately calculate the stress throughout the thickness of the wall. Delfino called the
ratio of the local wall stress to that at the outer surface of the wall in the same lo-
cation the “uniformity factor”. At the location of maximum stress, the uniformity
factor was the highest in the entire model at 8.8. A secondary stress concentration,
peaking at 340 kPa, was noted at the junction of the common and external carotid ar-
teries, and the uniformity was near 3.0. Throughout the model, stresses were highest
on the inner surface, and lowest at the outer wall surface with values ranging from 63
to 80 kPa. The first principal stress at the proximal common carotid artery was 148
kPa, and thus the stress “concentration factor” of Perktold and Salzar would have
been 4.42 at the apex stress peak. The stress at the carotid sinus was not discussed
explicitly, and from the original figures does not look locally elevated, as reported
in [80, 82]. The uniformity factor at the carotid sinus was 2.7. From the data and
figures provided, the stress at the inner wall of the carotid sinus appears to be within
the range of 175-220 kPa, and thus is not the second largest stress concentration as
was suggested by the studies of Perktold and Salzar.

Residual strains, and the assumed strain-free reference state can have a large im-
pact on the stresses calculated in a finite element model, and are shown in Fig. 2 to
drastically change the maximum stress and intramural stress gradients in the case
of the rabbit common carotid arterial segment. Because of the complex geometry
of the carotid bifurcation, a thorough understanding of the strain-free state and the
residual stresses in the unloaded state are difficult to obtain, and had for a long time
been ignored in studies. To characterize the residual stresses, Delfino [19, 84] made
a series of cuts in the unloaded, undiseased bifurcation and observed the subse-
quent change in geometry to discern the strain-free state of both human and porcine
carotid bifurcations. The first cut was on a plane that roughly halved each branch
and was considered to be an approximate symmetry plane of the full bifurcation.
After this cut was made, the cut edges of each branch remained co-planer with each
other, and the apex of the bifurcation rose into a “bump”. No further cuts caused
significant geometrical changes, and the shape after the first cut was taken to be
that of the strain-free state. The observation of co-planarity of the cut edges was
used, along with the assumption of material incompressibility, to define relations
between the opening angles and radii of the three branches in the strain-free state.
With these relations, the opening angle and strain-free radii of the internal and ex-
ternal carotid arteries could be determined from measurements of the thickness and
radius of all three branches in the unloaded state, and an opening angle of the cut
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common carotid artery. The opening angle and radii predictions from this method
were shown to match well with experimental observations. With this method, and
experimental data, Delfino constructed a strain-free finite element representation
of the bifurcation. The loading that would deform the strain-free state into the un-
loaded, but residually stressed state was determined and applied to the strain-free
model. After this initial deformation was accomplished, 10% stretches in the local
axial directions were applied to the internal and external carotid arteries, and then
the model was pressurized to 120 mmHg.

The inclusion of residual stresses into the model had a significant impact on
the uniformity factor throughout the model, and affected the maximum principal
stresses predicted. In the model with residual stresses, the peak stress was again
near the apex, but the stresses in that region were much lower (from 132 to 221 kPa),
and the area over which stresses were raised was much more localized than in the
model without residual stresses. Whereas the model without residual stresses had a
uniformity factor of 8.8 at the apex stress peak, the residually stressed model had a
uniformity factor of 1.16 there. The highest uniformity factor occurred at the lateral
wall of the carotid sinus, and was 4.1. The nominal uniformity factor at the proxi-
mal common carotid artery was 1.1 when residual stresses were taken into account,
compared to 3 when they were not, and the outer wall stresses were nearly a fac-
tor of two greater in the residually stressed case. Thus, the inner wall stresses were
generally reduced by a factor of nearly 1.5 when residual stresses were included.
Although other studies had hypothesized that wall stress magnitude was associated
in some way with atherogenesis, Delfino investigated whether or not the local uni-
formity of stresses throughout the wall thickness was involved with development of
the disease. To do this, Delfino compared the uniformity factor data from the resid-
ually stressed model to intimal thickness data from Ku et al [81]. Intimal thickening
is associated with early stages of developing atherosclerosis. When all 15 regions
studied in [81] were used in the comparison, uniformity factor and intimal thickness
were shown to correlate well, withr = 0.84, p < 0.05. When sub-groups of regions
were studies separately the correlation was even higher with r = 0.99, p < 0.001,
especially in the carotid sinus, where atherosclerosis commonly develops. Thus,
Defino’s study suggested that the uniformity of stress magnitude through the wall
may be a localizing factor in atherogenesis. A great deal of work to characterize the
human carotid bifurcation is contained in [19], and the reader is referred there for
further information. Of note is the study on inhomogeneity of material properties
throughout the bifurcation. The essential effect of considering the non-uniform col-
lagen content of the wall is that the stress at the outer wall of the apex is increased
by nearly a factor of 2 and remains largely unchanged elsewhere.

The model built by Delfino [19], based in part on data from Bharadvaj et al [85],
is recognized in the literature as being a realistic idealization of the human carotid
bifurcation. Several groups have used the same geometry as the basis for their own
finite element investigations in carotid bifurcation mechanics. Although the study
focused on flow characterization under resting and exercise conditions, Younis et al
[86] used the Delfino model without residual strains to build a fluid domain, and per-
formed FSI simulations with the same material formulation, axial pre-stretches, and
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solid boundary conditions used in [19]. Hariton et al [87] used the Delfino model
without residual stresses to investigate the effects of a materially inhomogeneous
carotid bifurcation, although the investigation took a very different approach than
that in [19]. Hariton et al, used the isotropic version of the strain energy density
function given in Eqs. (21-23) to test their hypothesis that collagen fiber orienta-
tion is actively remodeled in vivo such that the mean fiber direction is aligned with
the tensile maximum principal stress. It should be noted that the isotropic version
of the two-fiber family model in Eqgs. (21-23) is only slightly modified from the
isotropic strain energy density function employed by Delfino, containing an addi-
tional neo-Hookean term. The motivation for the hypothesis of fiber alignment to
maximum principal stress direction was the experimental observations of mostly
isotropic response for embryonic tendons and arteries, yet pronounced collagen fiber
organization after directional load conditioning, and thus an anisotropic response.

The basic method of the study was to perform a finite element stress analysis
of the bifurcation with an isotropic material formulation, and axial stretches of the
three branches that were modified from those in [19]. When the two largest principal
stresses, in directions €1 and é, respectively, were identified throughout the model,
the local fiber directions were defined as

agy = cosyéy + sinyeée,

agy = cosyé; —sinye, (37)
()

tany = —
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and the model was updated to include the material formulation of Eq. (23) using
these fiber directions. The static finite element problem was then solved again, this
time with the updated material formulation accounting for fiber alignment. This pro-
cedure was iterated until a suitable convergence was reached in principal stresses at
the apex and mid-sinus point. Convergence within 1% was reached after only eight
iterations, and the predicted fiber orientations agreed well with histological obser-
vations from cerebral arterial bifurcations. The results reached at convergence were
shown to be independent of starting fiber orientation distribution, although no rig-
orous convergence analysis was made. Fiber alignment along the apical ridge, or
saddle, occurred during the iterative process, leading to the same “tendon-like” col-
lagen structure noted by other experimental work. Validation of the remodeling fiber
model was performed by comparing the predicted fiber orientations of the roughly
cylindrical proximal CCA and distal ICA and ECA to the predicted orientations
through the thickness of an ideal cylinder vessel. The predictions from the full bi-
furcation model compared very well with those from the ideal straight segment,
indicating the stability and accuracy of the model. The high stress predicted at the
apex was about an order of magnitude larger than that at the inner wall of the cylin-
drical portions of the bifurcation. This result compared favorable to an analytical
estimate, and also to data obtained from collagen polarizing microscopy analysis,
where a known correlation between collagen birefringence and material properties
was exploited. Hariton et al also calculated the uniformity factor throughout the bi-
furcation, and the results were in the range of those found by Delfino. Of note is
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the fact that the uniformity factor at the medial aspect of the junction of ICA and
CCA was nearly 1, whereas the uniformity factor at the lateral wall of the sinus was
twice as great. This finding supports the hypothesis that intimal thickening known
to occur at the lateral sinus serves to homogenize the stresses through the arterial
wall, while intimal thickening is less often found at the medial aspect of the sinus.

7 Patient-Specific Studies

While much has been learned from creative and detailed studies on idealized
vascular structures, it is of great interest to draw more quantitative and specific
conclusions about the relationship between mechanical environment and disease ini-
tiation and progression. With regard to atherosclerosis at the carotid bifurcation, the
mechanical factors of interest are the flow-induced wall shear stress and wall stresses
and strains, while the macroscopic biological indicators of initiation and progres-
sion are intimal thickening and plaque growth and rupture, respectively. There are
additionally a host of cellular and biochemical indicators of disease initiation and
progression, and their relation to mechanics is of fundamental importance.

Among the many conclusions drawn from studies of idealized vascular structures
is that the flow velocity and pressure fields, and mechanical stresses and strains of
the arterial wall can be quite sensitive to even small changes in geometry and ma-
terial response. Thus, to make meaningful quantitative analyses of the relationships
between mechanics and biology, the obvious system to study is the real blood vessel,
in healthy and pathological conditions, as it exists in vivo. Complex geometries, dif-
ficult or impossible to discern material properties, and complicated in vivo boundary
conditions make the patient-specific blood vessel a difficult system to study. Much
progress has been made in recent years to address these challenges. The remainder
of this chapter will discuss the complications of modeling an in vivo, patient-specific
vessel, and publications that demonstrate the tremendous progress in computational
vascular mechanics will be presented. It is instructive to first briefly review the imag-
ing tools most commonly employed in patient-specific vascular studies.

8 Imaging-Derived Geometry and Flow Boundary Conditions

Patient-specific modeling requires a delineation of the geometric morphology of
the vascular lumen, of each of the components in the vessel wall, and of the outer
wall boundary. In addition, it is important to know the time-varying velocity profile
across each of the vessels that provide flow into the volume of interest. Finally,
accurate assumptions must be made about the pressure conditions in the outflow
vessels. Much of this information can be obtained with little or no invasiveness using
modern medical imaging methods. CFD and solid mechanics models require a three-
dimensional rendering of the structures of interest. This is conveniently obtained
using x-ray based or magnetic resonance (MR) techniques.



4 Computational Models of Vascular Mechanics 133

8.1 Computed Tomography

Computed Tomography Angiography (CTA) is a robust method for attaining large
volume coverage with uniform signal intensity in the flow lumen in relatively short
acquisitions [88, 89]. Data sets are acquired following the intravenous injection of
a contrast agent which opacifies intralumenal blood. Once arrival of the contrast
agent in the vascular segment of interest is detected, x-ray transmission data is ac-
quired from a series of thin slices covering the vasculature of interest. The data from
these slices can be reconstructed to provide a stack of contiguous images constitut-
ing a three-dimensional volume of data. Typical resolution in these studies is of the
order of 0.4 mm along each axis and the total acquisition can be performed in un-
der 10s. Following contrast injection, the vascular lumen is depicted with strong
contrast to adjacent soft tissue, which facilitates segmentation of the flow channel.
The ability to uniquely identify different materials in a CTA study depends on the
relative strength of absorption of x-rays of each component. In this regard, calcific
deposits have high absorption and the presence and distribution of calcified plaques
can be readily determined. It is more difficult to discriminate between other compo-
nents of an atheromatous plaque, but progress has been made in using this modality
to differentiate the necrotic lipid core from fibrous components of the plaque. As
has been noted, materials that are strong absorbers of x-rays also have high signal
intensity and this can be a drawback for CTA as it can be difficult to separate bone
from vessel if those two structures are close together. Similarly, metal in the body,
such as surgical clips or dental fillings, can generate pronounced artifacts which
obscure blood vessels. Finally, CTA carries a risk of deleterious effects from the
contrast agents used which are poorly tolerated by patients with compromised renal
function, and from the x-ray dose. For this reason, CTA is not the method of choice
for research studies or for studies that require multiple follow-up examinations. For
those applications, MR imaging is the preferred method. Figures 7a and 7b show
axial and sagittal imaging data, respectively, for a carotid bifurcation with a large
plaque burden.

8.2 Magnetic Resonance Imaging

MR imaging methods rely on the detection of magnetization arising from the nu-
cleus of hydrogen atoms in water [90]. All MR angiographic techniques aim to
create high contrast between spins that are moving and those that are stationary.
MR imaging methods are capable of measuring both the magnitude of the trans-
verse magnetization and the orientation of that magnetization in space (the phase).
Methods have therefore been devised that are designed to create large differences
either in the magnitude or in the phase of the magnetization between spins that are
stationary and spins that are moving. MR sequences that rely on blood flow to trans-
port fully magnetized blood into the imaging volume and thereby create a substantial
difference between the magnetization of flowing and stationary spins are generally
referred to as time-of-flight (TOF) methods and they display the magnitude of the
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Fig. 7 (a) Axial CTA showing vessel lumens (yellow arrows), vessel wall (white arrow) and large
plaque (red arrow). Note the high signal intensity of the vertebral bone (asterisk). (b) sagittal
reformation of the CTA data showing flow lumen (asterisk) and ulceration of atheroma (arrow)

transverse magnetization. Sequences that rely on the presence of contrast agents
injected into the blood stream to enhance vascular signal are referred to as contrast-
enhanced MRA (CE-MRA), and also create images that display the magnitude of
the transverse magnetization. Images that display the phase of the magnetization
are referred to as phase contrast (PC) images. These methods rely on the motion of
spins with respect to the imaging gradients for vessel-to-stationary tissue contrast.

8.3 Time-Of-Flight (TOF) Methods

The contrast that is obtained in an MRA study is closely related to the strength of
the magnetization in flowing blood relative to that in stationary tissue [91]. MR an-
giograms are built up by repetitive sampling of the magnetization. The strength of
the magnetization of spins decreases with each sampling until it reaches a steady
state value that is determined by the measurement parameters; the flip angle, the
repetition time, and the T1 relaxation time for that tissue. This process is referred
to as saturation. Stationary material remains in the imaging volume throughout data
acquisition and, therefore, the magnetization strength of stationary spins decreases
to the steady state value. The magnetization of blood at a given location in the vas-
culature depends on how much sampling it has experienced between entering the
imaging volume and reaching that location. Fast moving blood may retain sub-
stantial magnetization strength. Slowly moving spins may have undergone many
sampling intervals and its magnetization may, like stationary spins, also drop to the
steady state value. In magnitude images, spins that have received many RF pulses
and are strongly saturated will appear dark, whereas spins that retain substantial
magnetization strength will appear bright.
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8.4 2-D TOF Methods

Sequential 2-D TOF is a strategy that acquires the data one slice at a time. By mak-
ing the slice very thin, it is ensured that the slice will be replenished with blood
that has not undergone any prior sampling and that is not in the sampling volume
long enough to become saturated. Each single slice acquisition requires a time on
the order of eight seconds. The in-plane spatial resolution is typically 0.5 x 0.5 mm
with slices that are 2 mm or thicker. The sequence can be repeated multiple times,
each time shifting the position of the slice to permit the acquisition of a large set of
consecutive slices in a reasonable imaging time. High signal contrast is attained be-
tween blood vessels and the stationary surrounding tissue. This procedure provides
a full three-dimensional data set. Sequential 2-D TOF techniques provide strong
inflow enhancement when the slices are perpendicular to the vessels of interest.
When vessels run in the same plane as the slice, or reenter the slice, the blood be-
comes saturated and contrast is progressively lost. For this reason, the method is
most effective when the vessel of interest runs in a straight course. Although 2-D
TOF methods provide robust, high signal intensity with strong contrast between in-
tralumenal blood and surrounding tissue, the poor spatial resolution along the slice
direction reduces the applicability of this method.

8.5 3-D TOF Methods

The use of 3-D techniques overcomes the slice resolution limitation and permits the
acquisition of a full 3-D data set with isotropic voxels that have typical dimensions
of close to 0.5mm along each axis [92]. High-resolution voxels are critical for the
visualization of small branch vessels, which might otherwise be obscured by par-
tial voluming where a single voxel contains components both from the flow channel
and from soft tissue. The isotropic voxels also provide clear depiction of tortuous
vessels with equal fidelity in each spatial dimension permitting data reformation in
arbitrary obliquities. In acquiring data from a 3-D volume the excitation volume is
chosen to be a thick slab (or multiple thick slabs) with each slab of the order of
40 mm thick. 3-D acquisitions require markedly longer acquisition times than do
2-D methods but provide advantages in increased SNR. In 3-D acquisition, blood
flowing through the excitation volume undergoes substantially more sampling than
is the case for 2-D imaging. To avoid excessive saturation effects, the flip angle must
be reduced (<30°), and, although good contrast is retained, this adjustment results
in increased signal from adjacent stationary tissue. There have been reports that this
ability to visualize some aspects of the vessel wall can be used to investigate impor-
tant features of the atherosclerotic process, such as thinning or rupture of the fibrous
cap. 3-D TOF images have good spatial resolution but are subject to inconsistent
intralumenal signal resulting from patient motion or flow-related artifacts.
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8.6 Phase Contrast MRA/MRI

As described above, time-of-flight methods engender strong contrast between vas-
cular blood and stationary material by rapidly sampling all magnetization within
a volume of interest thereby strongly suppressing signal from stationary mate-
rial. Only blood vessels that bring blood with full magnetization into the sampling
volume retain substantial signal strength. A different class of MR methods, termed
phase contrast MRI, uses an approach where, in the interval between sampling
pulses, the displacement of magnetization through the magnetic field gradients is
encoded in the orientation of the magnetization vector [93]. Using this encoding,
the orientation of the magnetization, or phase, is proportional to the velocity of
blood flow. The signal from stationary material can be eliminated by acquiring two
measurements with opposite phase encodings and subtracting the two data sets. Be-
cause of this mechanism, signal from background material is nearly eliminated and
phase contrast angiograms can be acquired with considerable coverage. Although
phase contrast methods can be used to create MR angiograms, their particular power
resides in their ability to measure the velocity of blood flow. A common application
for phase contrast velocity measurements is to determine velocities in a thin slice
oriented perpendicular to the vessel of interest. It is straightforward to measure the
component of velocity perpendicular to that slice on a pixel-by-pixel basis at fixed
intervals through the cardiac cycle. With this approach, the velocity waveform in the
target vessel can be determined with a temporal resolution of around 30 ms. In re-
cent years, a number of investigators have explored the ability to determine all three
components of the velocity vector, at all points in a 3-D volume, at multiple points
in the cardiac cycle. These data sets provide interesting insights both into qualitative
and quantitative features of the velocity field. MR velocity methods are convenient
tools for determining the flow boundary conditions needed in CFD simulations.

8.7 Contrast-Enhanced MRA (CE-MRA)

The injection of intravenous contrast agents, such as Gd-DTPA, result in a strong
reduction in the time that sampled blood requires to reestablish full magnetization.
This means that contrast-enhanced blood will rapidly recover magnetization and
will have high signal strength, even for short values of the repetition time. In order
to perform a CE-MRA study, it is important to time the MR data acquisition so that
it coincides with the period during which there is peak arterial signal. After reaching
a peak, the arterial signal strength drops and venous signal starts to increase. Ap-
propriate timing of the initiation of data capture is therefore of key importance and
can be achieved using a test bolus to measure the time interval between injection
and peak magnetization enhancement in the region of interest. The full study is then
performed using the knowledge of the time delay between injection and peak mag-
netization strength. Alternatively, an automated method can be used to determine
when the injected material arrives in the volume of interest and signal enhancement
exceeds a preset threshold, at which point the CE-MRA study is begun.
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In most applications, it is important to be able to acquire a 3-D CE-MRA study
in a short time. This includes the extracranial carotid arteries, where there is a short
interval when the first pass of the bolus provides maximal intra-arterial signal and
when the venous enhancement, which occurs shortly after the arterial phase because
of the blood-brain barrier, has not yet occurred. Similarly, short acquisition times
are desirable for the vessels of the abdomen, so that studies can be obtained within
a breathhold. Typical CE-MRA studies can now be performed in acquisition times
from 10 to 20 s. However, the spatial resolution in MRI increases with the number of
times the magnetization is sampled, and the requirement that data be captured while
the contrast agent is still in the arterial phase results in CE-MRA images having
relatively low resolution. Typical resolution in a CE-MRA study is then 0.5 x 0.5 x
1.2 mm. Despite this shortcoming CE-MRA provides high contrast images that are
generally free of the artifacts that result from flow-related effects [94].

8.8 Black Blood MRI

The MR angiographic methods described above are intentionally designed to high-
light flowing blood. Images obtained using such methods can be found in chapter 5.
Soft tissue, including the vessel wall, is only poorly delineated using these se-
quences. The great majority of MR methods that have been used to investigate
the geometric and compositional morphology of the vessel wall rely on standard
MRI methods for imaging soft tissue, namely spin echo sequences. In spin-echo
sequences, the image strength of each soft tissue component can be adjusted by
manipulating the timing and type of radiofrequency pulse used. The approach that
has had most widespread application is the use of pulses designed to eliminate signal
from all tissue apart from that in the slice of interest. This is termed double inversion
preparation. In analogy to time of flight methods, the signal strength of intralume-
nal blood in the slice of interest reflects the magnetization state that is transported
into the slice by newly arriving blood [95]. Double inversion preparation can be de-
signed such that magnetization of blood outside the slice of interest reaches a null
condition, and these images therefore have a black lumen. In addition, fat saturation
preparation is used to suppress signal from adipose tissue. Spin echo sequences can
be created with the usual contrast weighting employed in routine clinical imaging,
referred to as T1, T2 or proton density weighting. A number of investigators have
demonstrated, in comparison to histology on excised specimens, that combinations
of these multi-contrast images can be used to define the major components of the
atherosclerotic plaque including the fibrous cap, the lipid pool, calcifications, and
intra-plaque hematoma. Figures 8a and 8b show representative images from such
studies. The image resolution in these image sets is of the order of 0.5 x 0.5 x 2 mm.
These data sets can be used to construct models of diseased arteries but with a simi-
lar caveat as to that for 2-D TOF methods, namely that there is low resolution along
the slice axis.
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Fig. 8 (a) T2-weighted DIR fat saturated, Fast Spin Echo sequence shows a low intensity lipidic
core (arrow), separated from the flow lumen (asterisk) by a thin fibrous cap. (b) T1-weighted
DIR fat saturated, Fast Spin Echo sequence shows three contiguous slices through the extracranial
carotid arteries. The internal carotid artery (arrow) is visualized showing the black lumen (asterisk
at the bifurcation — left image) and surrounding atheroma with calcific inclusions (black lines in
the atheroma). The middle and right images are from more distal levels

8.9 Ultrasound

MR and CT are relatively expensive modalities that are only available in fixed lo-
cations. Ultrasound (US) is portable and can be used on many patients who have
contraindications to MR (such as pacemakers or claustrophobia) or CT (such as con-
trast agent allergy), and is therefore often the preferred modality for screening
examinations. Ultrasound can be used in different modes with B-mode, color mode,
and Doppler as the most common modes used in vascular examinations. B-mode
imaging builds up a grey scale image of soft tissue interfaces by transmitting ul-
trasound pulses into the body and detecting the time of return of echoes reflected
off those interfaces. Depending on the frequency of transducer used, in-plane spa-
tial resolution in US images is of the order of 0.5 mm. Because US is a hand-held
modality, it is impractical to build up a three dimensional data set from multiple
images as their relative locations in space are unknown. In color mode, information
that is collected on the direction of motion of flowing blood is color encoded and
superimposed on the B-mode image. These spatial maps of the vascular structures
can then be used to identify locations where velocity waveforms can be measured
using Doppler US (DUS). With DUS, an insonation volume is placed in a desired lo-
cation, for example, in the center of the vessel of interest. The full spectrum of flow
velocities within the insonation volume can be determined with a high temporal res-
olution that is on the order of 10 ms. Using this approach the velocity waveform at
a point can be accurately determined through the cardiac cycle. These measures can
then be used for setting the physiologic boundary conditions in CFD simulations on
a patient-specific basis.
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8.10 Image Segmentation

Patient-specific computational models require a determination of the geometric
boundaries of all constituent of the blood vessel of interest including the flow lu-
men, and all tissue components in the vessel wall. The ability to perform accurate
and reliable segmentation of three-dimensional medical imaging data sets depends
on the spatial resolution of the data, and the contrast between the different compo-
nents — the higher the contrast the easier is this task. Manual contouring of different
components can be effective using expert readers to determine the boundaries of
different components. However, depending on the size of the data set, this can be
a very tedious and labor-intensive task that can result in fatigue-related contouring
errors. With sufficient contrast, simple thresholding can be applied to establish the
contours of each component. This is typically applied on each slice of a 3-D volume,
and lofting between one slice and the next can be accomplished using spline inter-
polation algorithms to form surfaces of all components through the 3-D volume. In
cases where contrast between different components is not sufficiently high to un-
ambiguously identify the location of the interface, more advanced image processing
algorithms can be applied. A wide variety of methods have been employed includ-
ing: the level set method that permits numerical investigations of surfaces without
requiring that the surface has a parametric description; methods that interrogate ge-
ometric features of boundaries such as intensity gradients; or methods that minimize
an energy function such as active snake contouring which use constraints on features
such as smoothness and intensity patterns to determine the boundary contour.

9 Image-Based Modeling of Healthy Vessels

As discussed in the chapter 5, CFD of the patient-specific carotid bifurcation often
makes a rigid-wall assumption. The geometric information needed for these models
is limited to an accurate depiction of the luminal surface of the vessel, and various
forms of angiography have been used with great success. While much has been
learned from these studies, the assumption of rigid walls may not be suitable for flow
analysis in carotid arteries, where radial distension of the healthy artery may be on
the order of 10%. Additionally, this approach will yield no useful information of the
solid mechanics of the vessel. To model the solid mechanics aspects of the artery,
detailed knowledge of the luminal and outer adventitial surfaces of the vessel are
required at minimum, and allow the vessel to be treated as a single layer of tissue.
For a more realistic 2-layer model, delineation of the media-adventitia interface
must be made as well.

In [96], Zhao et al used a combination of MRA and ultrasound to define their
compliant-wall carotid bifurcation model, the subject was a healthy 40 year old
male. A 2-D time-of-flight MRA study yielded 64 contiguous 1.5 mm thick slices,
roughly centered on the bifurcation, from which a 3-D reconstruction of the vessel
lumen was made. B-mode ultrasound imaging was used to establish representa-
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tive thicknesses of the vessel wall at the proximal CCA, distal CCA, and the distal
portions of the ICA and ECA. The boundary of the vessel lumen at each slice was
segmented using a “snake” active contour algorithm. The centerlines of the vessel
branches were constructed and fit in a least-squares sense with cubic splines, and
then the 2-D contours were shifted in-plane so that the lumen centroids coincided
with the spline location at every slice. This gave an axially smoothed representation
of the bifurcation. Mapping of the 3-D Cartesian data into local cylindrical frames (r,
z, ¢) and subsequent smoothing of radius r over the local z-¢ plane effected smooth-
ing of the entire luminal surface. Interpolation across slices was used to construct
a set of locally-axial B-splines and thus a surface description appropriate for mesh
generation was achieved. A multiblock approach was taken in generating a struc-
tured grid of the bifurcation using hexahedral cells suitable for the study’s finite
volume CFD methods. The luminal surface used to make the fluid grid also served
as the boundary on which a grid of shell elements was generated to represent the ar-
terial wall. Each shell element’s thickness was either taken to be one of the measured
representative thicknesses, or an interpolated value between them. The incremental
Young’s modulus in the range of diastolic to systolic pressure was determined from
time-resolved ultrasound data collected for the subject.

Pulsed Doppler ultrasound was used to establish the flow division between the
ICA and ECA and the flow velocity waveforms at the ECA and ICA, which were
the outlet boundary conditions on the flow domain. Applanation tonometry was em-
ployed to measure the pressure waveform at the CCA, which was the fluid inlet
condition for the CFD simulation. The fluid domain used a moving grid approach to
handle the motion of the inner wall boundary. Zhao et al used two separate commer-
cial codes to perform the numerical simulations, a finite volume solver for the fluids,
and a finite element solver for the solids. At every timestep of the transient simula-
tion, iteration between the two codes enforced the FSI boundary conditions stated
in Eq. (35). Only pressure was passed from the fluid domain to the solid domain, as
viscous stresses were known to be much smaller.

In both [96] and [97] Zhao et al took a comprehensive approach to modeling
the carotid bifurcation of a specific patient, collecting data on geometry, material
response, and flow boundary conditions through various forms of medical imaging.
The authors noted that the inclusion of wall compliance changed the extent, and the
duration of slow moving or recirculating flow within the bifurcation. Additionally,
the distributions and magnitudes of wall shear stress were shown to differ when
wall compliance was considered, the changes being most pronounced around peak
systole. The authors also noted the important result that secondary flow patterns are
significantly modified when a realistic and non-symmetric geometry is modeled.
This could, for some geometries and flows, lead to significant differences in wall
shear stress distribution and must be considered if a detailed correlation between
mechanics and endothelial biology is to be made. In [97], the authors performed
the FSI analysis for five healthy subjects, and further noted the sensitivity of flow
patterns and wall stress magnitudes and distributions on the geometrical and physi-
ological features of the patient. One result common to each subject was the overlap
of high wall tensile stress and low wall shear stress in regions that are known to



4 Computational Models of Vascular Mechanics 141

preferentially develop atherosclerosis, indicating that both fluid and solid mechan-
ics may play a role in disease initiation.

In [98], Younis et al employed similar strategies to model the carotid bifurca-
tions of three healthy subjects. An ECG-gated 2-D black-blood spin echo MR study
was used to image the vessel wall at twenty slices centered on the bifurcation. In-
plane resolution was 0.39 mm and slice thickness was 2 mm. The imaging data was
processed to estimate inner and outer wall contours, defined by deformable splines,
that were anisotropically smoothed through minimization of a surface energy in an
external potential field. The inner and outer wall contours were used in a lofting
procedure in a solid modeling code to generate parasolid models that could be dis-
cretized directly by a finite element preprocessor. The same techniques were used
to create a fluid domain and a solid domain for FSI simulations. Flow profiles at the
inlet and outlets of the model were generated using a Womersley profile assumption
and scaling based on centerline velocities obtained from Doppler ultrasound studies
on the subjects. The solid domain was meshed with 11-node tetrahedral elements
suitable for large strain analysis of incompressible, hyperelastic materials. Vessel
wall response was modeled using the Mooney Rivlin material formulation, and
the material parameters presented in [ 19]. The fluid field was meshed with four-node
tetrahedra linear in velocity and piecewise constant in pressure. A commercial finite
element code was used to perform the fluid-only, solid-only, and FSI computations.

A comparison between the rigid-wall models and the compliant wall models re-
vealed that wall compliance had a small effect on wall shear stress patterns (except
at the apex, where differences up to 25% were noted), but an appreciable effect on
the magnitude of oscillatory shear index (OSI). OSI is a measure of how much a
particular region of the wall experiences flow in a direction against that of the tem-
poral mean wall shear stress vector, and high OSI has been correlated with elevated
monocyte adhesion and atherogenesis. The authors noted that wall distensibility
generally increased OSI by a factor of two throughout their model. The solid-only
models showed that cyclic strain, the difference between von Mises strain at systolic
and diastolic pressures, was highest for all three subjects at the apex of the bifurca-
tion. Cyclic strain is related to endothelial cell and smooth muscle cell proliferation,
and to the migration of smooth muscle cells in the vessel wall. The upregulated pro-
liferation of endothelial cells is thought to increase the permeability of the artery
wall, and thus render it more susceptible to atherogenesis. Elevated maximum wall
shear stress temporal gradient, and cyclic strain were co-located at the apex and
the transition region between the CCA and ECA, two sites that commonly develop
atherosclerosis. The authors note that this may suggest that atherosclerosis is pro-
moted by several factors and that no one mechanical descriptor can fully account for
atherosclerotic lesion distribution. The references in [98,99], and in chapter 5 pro-
vide an excellent review of the relationship between mechanical environment and
cellular and biochemical processes that are thought to promote atherogenesis.

There is much ongoing work to elucidate the complex biochemical and cellular
mechanisms of atherogenesis, and their relation to local hemodynamics and solid
mechanics. It is likely that modeling approaches that account for the direct influence
of mechanics on biology will shed a brighter light on the specific conditions un-
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der which atherogenesis is promoted. Such models would necessitate many further
in vitro and in vivo studies to characterize the cellular response to mechanical stim-
uli. The acute conditions associated with atherosclerotic disease, such as stroke and
myocardial infarction, are due to a thromboembolic event following plaque rupture
or ulceration. Although there is significant biochemistry involved in weakening of a
lesion, rupture and ulceration are inherently mechanical processes. Thus, an under-
standing of the mechanical environment of the atherosclerotic vessel is needed.

10 The Atherosclerotic Artery Wall

Atherosclerosis is a slowly progressing disease characterized by the accumulation of
material within the artery wall. The disease is typically initiated in adolescence, and
is seen with greater frequency with increasing age. Atherosclerosis preferentially
affects larger arteries, and its presence has been correlated with local hemodynamic
complexity. Specifically, it has been shown that regions of the vessel wall experienc-
ing low and oscillatory wall shear stress are more likely to develop atherosclerotic
lesions [81]. Presumably, this is due to shear-dependent alterations in the arrange-
ment and permeability of the endothelial cells at the lumen surface [100-102].
Atherosclerosis is recognized pathologically to be an ongoing inflammatory re-
sponse to local endothelial dysfunction, which may be caused by any combination
of several factors. In addition to flow-induced shear stress, some of these factors
are local infection, oxidative stress, chronic hypertension, and most notably, ele-
vated low-density lipoprotein (LDL) levels [103]. At the dysfunctional endothelium,
LDL is allowed to pass into the vessel wall, where it is oxidized by reactive oxy-
gen species. The reactive oxygen species are present naturally, and in increased
concentrations when the patient is exposed to one or more atherosclerosis risk fac-
tors. An inflammatory response to the oxidized LDL is mounted, and monocytes are
recruited locally through the expression of various inflammatory mediators. Low
mean or oscillatory wall shear stress tend to coincide with portions of the flow field
where particle residence time is significantly elevated, such as areas of flow re-
circulation or oscillation. Coupled with increased endothelial permeability, locally
increased residence time can enhance the mass transport into the vessel wall of both
LDL and inflammatory cells at the lesion site [81]. Inside the intima, monocytes are
activated to macrophages that phagocytize oxidized LDL; after extensive phago-
cytic activity the swollen macrophages take on a foamy appearance and are termed
foam cells. 1t is the accumulation of foam cells, collagen, elastin, fibrin, extracellular
cholesterol, and other cellular debris that forms an atheromatous plaque. The initia-
tion and progression of atherosclerosis is strongly influenced by local biochemistry
and cellular-level processes, and a comprehensive review is found in [104—106] and
the references therein. For the present purpose, it will suffice to describe the struc-
tural aspects of the atherosclerotic vessel.

The earliest macro-scale manifestation of atherosclerosis is the presence of fatty
streaks, which are caused by the accumulation of lipid-laden macrophages and
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T-lymphocytes under the intimal endothelium [107]. At this stage, the atheroscle-
rotic vessel has the mechanical response of the healthy vessel in a passive sense,
although there may be a local decrease in nitric oxide (a vasodilator) production
affecting its active response.

As atherosclerosis progresses, the arterial wall adopts a structure quite different
from that of the healthy artery, and the mechanical response reflects this difference.
Because atherosclerosis is a slowly progressing disease and its severity often cor-
relates with advancing age, it should be noted that the aging intima thickens and
becomes stiffer naturally [62]. Thus, in an atherosclerotic artery, even at locations
without an acute plaque lesion, the intima can play a significant role in the mechan-
ical response of the artery. This is in contrast to the healthy young intima, which
does not have a significant impact on the structural mechanics of the arterial wall.

Earlier in the progression of a plaque, as foam cells accumulate in the intima, the
vessel wall remodels and expands outward to preserve the patent lumen area [108].
Thus, the outer vessel wall may adopt a swollen appearance focally around the
plaque and little or no luminal narrowing is present on an angiographic study. As the
inflammatory response continues, SMCs are signaled to proliferate and are recruited
from the media to the intima directly overlying the lipid and macrophage-rich
plaque. These smooth muscle cells, and other fibrous components of the actively
remodeling extracellular matrix constitute the fibrous cap of the plaque. It is the
rupture or ulceration of this fibrous cap and subsequent exposure of highly thrombo-
genic plaque contents to flowing blood that can cause acute thromboembolic events
like stroke and myocardial infarction [109]. A coarse view of the early atheroscle-
rotic vessel would recognize the intima, fibrous cap, lipid and macrophage-rich
plaque core, media, and the adventitia as distinct structural components with in-
dividual mechanical behavior. Of course, at the histological scale, each one of these
components has a highly heterogeneous microstructure of its own.

Not every plaque ulceration or rupture will cause a thrombo-embolic event, and
the disruption may eventually “heal” with the reformation of the fibrous cap. A se-
ries of ruptures and repairs can eventually lead to a large plaque that grows inward
into the vessel lumen. Plaques with such a history are often the cause of high de-
gree arterial stenosis, where the patent lumen diameter has been reduced by 50%
or more [110]. These and other older plaques have a more irregular appearance and
structure. The fibrous cap is of non-uniform thickness, and the lipid-rich plaque
core has a very irregular shape and may not be a single continuous body. Addi-
tionally, bulk calcification and smaller calcium hydroxyapatite deposits are often
present within surrounding fibrous plaque (regions of smooth muscle cells, colla-
gen, and macrophages) and smooth muscle, and in the plaque core. The mechanical
characteristics of the later stage atherosclerotic vessel are determined from the size,
shape, strength and relative locations of the intima/fibrous cap, the remodeled me-
dia, the lipid-rich plaque core, fibrous plaque, calcification, and the adventitia.

The atherosclerotic artery wall is quite different from the healthy artery in both
composition and mechanical response. In addition to the compositional and ge-
ometrical complexities of an atherosclerotic lesion, there are numerous ongoing
biochemical processes that affect the mechanics of the lesion tissues. The cells
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and materials present in atherosclerotic plaques play regulatory roles in these bio-
chemical processes in addition to their structural roles, and thus the full mechanical
characterization of a lesion is time dependent. Matrix metalloproteinases (MMPs)
are expressed by various cells present in a lesion, and are capable of degrading
structural proteins such as collagen and elastin. The MMPs are largely inflamma-
tory mediated, and so the inflammatory state of the lesion and the macrophage and
monocyte population of the tissues is thought to be of great importance to the like-
lihood of mechanical failure.

11 Solid Mechanics of Idealized Plaque Lesions

Neglecting the ongoing biochemical changes in the active and inflamed plaque,
the mechanical characteristics of the later stage atherosclerotic vessel are deter-
mined from the size, shape, and relative locations of the intima/fibrous cap, the
remodeled media, the lipid-rich plaque core, fibrous plaque, calcification, and the
adventitia. The techniques used to perform computational analyses of these lesions
are largely the same as those used to study a healthy vessel. The most notable dif-
ferences are the requirements for further material characterization of lesion tissues,
and for more advanced methods of mesh generation.

The general goals of computational mechanics investigations of atherosclerotic
vessels are the understanding of lesion behavior and estimation of plaque rupture
potential. Although there exist histological characterizations of plaques that are vul-
nerable to rupture, it is still not exactly clear what the rupture mechanism is, nor
what mechanical environment(s) leads to it. As previously discussed, the obvious
system to study in atherogenesis investigations is the not-yet-diseased vessel. In
much the same way, the obvious systems to model in studies of plaque rupture are
vessels that contain unruptured and ruptured atherosclerotic lesions.

Because of the great variety of material shapes and distributions, several groups
have constructed idealized models of atherosclerotic vessels. In this way, geometric
characterization of the model is trivial, and stresses and strains are easily related to
features such as fibrous cap thickness, lipid pool volume, calcification/lipid volume
ratio, and lumen eccentricity. In [103], Loree et al constructed a 2-D model of an
atherosclerotic coronary artery to investigate the effects of fibrous cap thickness on
circumferential stress. This classic 2-D model was of a transverse cross section of
an artery with an eccentric fibrous plaque burden and a crescent-shaped lipid pool,
with hemi-circular ends, extending 140° concentric with the lumen. At the time
of this study, little data on the nonlinear material properties of arterial tissue or fi-
brous plaque existed. Because of this, linearly elastic, transversely isotropic material
parameters measured in other published experiments were used. The Young’s modu-
lus in the radial direction was five times higher for fibrous plaque than for artery wall
tissue, and the circumferential modulus and shear modulus were ten times greater
for the fibrous plaque. The Young’s modulus of the isotropic lipid was taken to be
1/100 that of Eg for the arterial tissue. Ten similar geometries of varying fibrous
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cap thickness were meshed with eight-node quadrilateral plane-strain elements, and
adaptive remeshing was employed through the simulations. The luminal surface of
the atheromatous arterial mesh was subjected to a pressure load of 110 mmHg, and
boundary conditions exploited symmetry. In a first study, the authors changed the fi-
brous cap thickness by varying the lipid pool thickness at constant stenotic severity,
and found that the peak circumferential stress normalized by the luminal pressure
increased significantly with decreasing cap thickness. At a cap thickness of 0.5 mm,
the normalized stress was around 5, and rose nonlinearly to 25 at a cap thickness
of 0.1 mm. Nearly identical stresses were found when varying the cap thickness by
changing the stenosis severity at constant lipid pool thickness. When changing the
stenosis severity in a model without a lipid pool, virtually no change in normalized
peak stress was seen. Thus, the study showed that fibrous cap thickness, and not
stenosis severity alone, was likely the dominant factor influencing plaque rupture
risk, as fibrous plaque must experience mechanical failure at some level of stress.

The use of a plane strain finite element model by Loree et al was justified by
the assumption that the plaque structures of interest would extend nearly a vessel
diameter along the vessel axis. Such an assumption is reasonable for many analyses
and is common in the literature, but careful attention must also be paid to the lon-
gitudinal distribution of stress in the diseased vessel. The material properties from
[103] were used by Imoto et al. in [104] in studying the longitudinal distribution
of von Mises stress in representative plaque/artery structures. Although the authors
state that plane strain elements were used, their results show that the finite ele-
ment formulation was axisymmetric to match the geometry. Plane strain elements
would not have accurately accounted for the dominant circumferential component
of stress. Imoto et al reported that there were stress concentrations at the “shoul-
ders” of the plaques, the longitudinal positions where the plaque began and ended.
This result cannot be seen in a transverse 2-D model. Peak stresses were higher,
assuming constant thickness plaques, for geometries with positive remodeling as
opposed to those with stenotic remodeling. For the models that included lipid pools,
the authors reported that the cap stresses increase dramatically with decreasing cap
thickness, in agreement with Loree et al. Referencing the literature, the study used
a fibrous plaque yield strength of 300 kPa, and noted that this stress was exceeded
when the fibrous cap over a lipid pool was thinner than 60-100 wm, depending on
vessel radius. This finding agrees well with the critical cap thicknesses reported in
several other studies. The size of the lipid pool was shown to have no effect on the
peak stress in the cap directly overlying the pool, and calcification within the cap
overlying the pool was shown to reduce cap stress magnitudes.

In [50], Tang et al investigated the effects of lipid pool size and cap thickness on
the stress distributions in fully three-dimensional geometries using FSI to load the
diseased artery wall model. Tang et al reported that the model with a smaller lipid
pool and thicker cap than the baseline model experienced a peak stress reduction
of about 20%, and that the same geometry without a lipid pool experienced a stress
peak reduction of 33%. When the size of the lipid pool was greater than that of
the baseline model, the stress peak increased by about 30%. The models used were
for 100% eccentric plaques, and the stress peaks were all on the luminal surface
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opposite the plaque, although the authors noted that a further reduction of cap thick-
ness resulted in maximum stress at the thinnest point of the cap. As the lipid material
was taken to be highly deformable, compressive stresses more than doubled when
the lipid pool size was increased. Li et al [105] further investigated the deformation
of an idealized dome-shaped, 100% eccentric plaque subjected to carotid artery-like
flow conditions. In their longitudinal cross section model, fibrous cap thickness was
varied between 0.1 mm and 2 mm, and 90 different stenotic severities between 10%
and 90% were simulated. A two-term Ogden model was used to characterize both
the fibrous cap and lipid pool. Due to the inlet pressure, and impinging flow, maxi-
mum deformation of the plaque was seen on the proximal edge of the plaque about
midway from shoulder to peak stenosis. Maximum principal stress was highest at
points surrounding maximum deformation, indicating a bending mode of deforma-
tion in the cap. Li et al’s parameter study showed that for stenoses of 30-70%,
plaque cap thickness was a critical determinant of rupture potential, using the often
cited 300 kPa possible rupture stress [106]. For cap thicknesses of 100 wm or less,
rupture was predicted for even 10% stenosis. Although their model was very sim-
ple, the authors noted that the stress distributions calculated correspond well with
the proximal-surface ulcerations seen histologically in such lesions.

11.1 Microcalcifications

The work of Imoto et al [104], and studies by several other groups, showed that
calcifications within the fibrous cap attenuated cap stress levels and therefore made
rupture less likely. Additionally, the work of Huang et al. [107] showed that the
there was no significant change in maximum principal stress when calcifications
were replaced by fibrous plaque in the FEM models of 20 resected coronary arter-
ies. This was in contrast to the sometimes-severe decrease in stress when a lipid
pool was replaced with fibrous plaque in the models. The calcifications considered
in this work were not specifically overlying any lipid pool present. In these studies
the calcifications considered were large, on the order of the cap thickness or larger.
In [108],Vengrenyuk hypothesized that smaller calcifications can actually induce
fibrous cap rupture through a debonding process caused by significantly elevated
interfacial stresses at the surface of the calcified inclusion. The theoretical solu-
tion presented in the paper was not specific to a vascular model, and was based
on a single rigid spherical inclusion eccentrically located in a thin elastic layer (2—
10 inclusion diameters) under uniaxial tension. The upper and lower surfaces of
the elastic layer were considered stress-free. Results suggested that if an inclusion
is present in a thin fibrous cap near the lipid-pool boundary, then a region of the
cap that would be stressed above 300 kPa without the inclusion would see a local
stress increase of nearly a factor of 2. The authors noted that this could explain
the paradox that although plaque rupture is commonly seen at regions where high
stress was predicted, the rupture point is not always at the point of maximum pre-
dicted stress. Microcalcifications are very small, on the order of 10 um, and are not



4 Computational Models of Vascular Mechanics 147

detected by clinical imaging. For this reason, mathematical models of atheroscle-
rotic plaque had not previously considered their effects. In addition to calculating
the stress amplification due to such inclusions, Vengrenyuk et al. also used confocal
fluorescence microscopy and micro-computed tomography to search for microcal-
cifications in resected coronary lesions. Although microcalcifications in the fibrous
cap were found to be less common than calcifications in the necrotic core of the
plaque, their presence may help explain why some plaques rupture where coarse
resolution mechanics suggest they should not.

In [109, 110], Bluestein and Avrahami et al. studied the influence of microcal-
cifications in an idealized stenotic vessel similar to that in [50, 104, 105]. Two FSI
models were constructed of ideal coronary arteries in [110], one with 80% stenosis
severity by area, the other with 34% stenosis. The dimensions of the artery wall,
lumen, and lipid pool are provided in the original paper, but it should be noted that
minimum cap thicknesses were 40 and 60 pm for the more and less stenotic mod-
els, respectively. In this way, more realistic lesion geometries were considered, and
the studies’ results could be interpreted with those of [108] in mind. Full 3-D FSI
simulations were run for each model with and without a 10 um diameter spherical
calcification placed mid-thickness within the fibrous cap. Each material present was
modeled as a modified Mooney-Rivlin solid, with material parameters taken from
[52]. A physiological coronary artery flowrate waveform with assumed parabolic
profile was applied at the lumen inlet, and the outlet was considered traction free.
The remaining boundary conditions, although common for such models, do not
accurately capture the mechanical environment of the coronary arteries, which un-
dergo cyclic compression from surrounding myocardium. The peak wall von Mises
stresses were always on the proximal surface of the stenosis, and were nearly tripled
when a calcified inclusion was modeled. The model with 80% stenosis experienced
significantly higher stress magnitudes than the 30% case. In addition to the highly
elevated stresses due to a calcified inclusion, the more and less stenotic models each
saw a roughly 10% increase in first principal stretch when the inclusion was consid-
ered. This translates into a considerable difference in local strain.

12 2-D Patient-Specific Plaque Studies

As studies like [50, 103—105, 111] have shown, the stress and strain fields in the
diseased arterial wall are strongly influenced by the shape and size of the lumen
and other features like lipid pools, calcifications or fibrous plaque burden. Al-
though these models have yielded much useful information about the mechanics of
the atherosclerotic vessel, idealized geometries impose limitations on their utility.
Studies on idealized diseased vessels cannot be used to investigate the mechanics
of a real lesion, whose evolution in vivo may or may not be known. These stud-
ies are also not capable of relating the mechanical environment to biological factors
like inflammatory state or histologically determined composition. Furthermore, such
studies are incapable of establishing material parameters for real tissues using an
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optimization or inverse-problem technique.* It is therefore of great interest to study
the mechanics of the atherosclerotic vessel on a patient-specific basis, using ge-
ometries and compositions determined from histological analysis, or in- or ex vivo
imaging methods.

Due to a lack of suitable non-invasive imaging techniques, the earliest patient-
specific studies of atherosclerotic lesion mechanics used histological information to
construct a finite element model. The possibility for specimen distortion and damage
made this approach challenging for discerning the true in vivo state of the diseased
vessel. Additionally, histological analysis requires a very thin slice of the tissue
to be used, and thus these models were restricted to 2-D analyses that invariably
assumed a plane-strain state of stress. While the plane-strain assumption is likely
admissible for certain lesions, other lesions involving significant longitudinal vari-
ation in composition or boundary conditions may require a fully 3-D analysis. In
[112], Cheng et al investigated their hypothesis that plaque rupture occurs at sites of
elevated circumferential stress by performing finite element analyses of 24 coronary
lesions. Twelve ruptured lesions from patients who died from coronary thrombosis,
and twelve unruptured lesions from patients without thrombosis were used in the
study. Contours were drawn for fibrous plaque, vessel wall, calcification, and lipid
pool as determined histologically. The digitized contours were used to construct
FEM meshes. Ruptured plaques were reconstructed into their probable pre-rupture
states. All materials were assumed to be linearly elastic and transversely isotropic,
using the same moduli and Poisson ratios as [103]; the Young’s modulus of the
calcified regions was taken to be tenfold that of Eg for fibrous plaque. The lumi-
nal surfaces of the models were loaded with a pressure of 110 mmHg. Cheng et al
found that 12 out of 12 ruptured lesions had a combined 31 regions of circumfer-
ential stress exceeding 300 kPa, while only one stable lesion demonstrated one area
of such elevated stress. Furthermore, the authors found that 7 out of 12 ruptured le-
sions ruptured at the area of peak stress, and ten out of 12 ruptured at regions where
stress exceeded 300 kPa. The average calculated peak stress in ruptured lesions was
significantly almost 2.8 times higher than in the stable control lesions. These re-
sults indicated that elevated circumferential stress may indeed contribute to plaque
rupture in the coronary arteries.

In [113, 114], Kaazempur-Mofrad and Patel et al also employed FEM mod-
els built from histological data. In [114], the authors investigated the correlation
between various mechanical descriptors and histological findings for unruptured
plaques freshly harvested at carotid endarterectomy. The transverse slices of
diseased vessel were cut radially so that they could assume their macroscopically
stress-free state. Histological staining for collagen, smooth muscle cells, lipids,
and macrophages allowed delineation between arterial wall tissue, fibrous plaque,
calcification, and lipid pool. The histologically determined segmentation of each
component was used to construct a finite element mesh of the artery in the stress-
free state. Plaque components and arterial wall were all modeled as Mooney-Rivlin

4 See the ‘Current Developments’ section at the end of this chapter.
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rubber-like solids, and the segmented geometries were discretized using nine-node
plane strain quadrilateral elements. Thermally contracting truss elements were used
to rejoin the cut ends of the unstressed vessel wall, and thus residual strains and
stresses were approximated for the diseased vessel models. After the thermal load
was applied to rejoin the cut ends of the section, the luminal surface of the dis-
eased vessels were loaded with patient-specific diastolic and systolic pressures, as
measured prior to surgery. von Mises stress, circumferential stress, and cyclic strain
were calculated for each specimen. Significant negative correlations were found for
both collagen and macrophage content and the mechanical descriptors at the luminal
surface averaged over 15° circumferential sectors. No significant correlation could
be made for lipid or smooth muscle cell content. The most significant correlations
were made with respect to cyclic strain, indicating that this descriptor should not
be overlooked when trying to establish rupture risk, as it is may be most indicative
of an active remodeling plaque. The authors demonstrated, in [113], that cyclic
strain was virtually identical whether or not the residual stresses were incorporated
via the thermally contracting truss scheme. This is an important result, as studies
like [115] by Ohayon et al show that residual stresses can still be quite significant
in heavily diseased coronary vessels. In that study, the authors used histological
staining to define the boundaries between vessel wall, fibrous plaque, and lipid
pool. The geometry was meshed using six and eight node plane strain elements,
and the materials were all represented as neo-Hookean solids. The cut ends of the
stress-free open sector vessel walls were rejoined to determine the residual stresses
and strains. After the segments were closed, and thus residually stressed, a pressure
load of 16 kPa (120 mmHg) was imparted to the luminal surface of the model.
Incorporation of residual strains was shown to reduce calculated peak stresses,
sometimes by roughly a factor or 4. Additionally, accounting for residual stresses
lead to quite different von Mises stress fields, with new stress peaks away from the
luminal surface, or even behind a lipid pool in some cases. Thus, the importance of
residual stresses should be established on a case-by-case basis to ensure the most
accurate stress and strain calculations.

Other studies, such as [111], have investigated the cyclic straining of the tissue of
a plaque lesion, and its implications on fatigue modes of failure. In [111], Versluis
et al used an idealized model similar to that in [103], with materials modeled by
a two-term Ogden strain energy function. A crack propagation algorithm using a
modified Paris relation was employed to determine the progressive fracture in the
lesion based on evolving stress fields. While there are still many uncertainties in
the fracture mechanics of fibrous plaque tissue, the study yielded several interesting
results. Cracks were seen to propagate nearly radially from the initiation point, a
point of peak stress, so initial stress distributions may be suitable for prediction
of a fracture path. Also, reduction of heart rate, mean and pulse pressure, and a
reduction in stiffness disparity between plaque components were shown to increase
time to rupture in the evolution models.

As previously mentioned, histological analysis necessitates that the tissue be pre-
pared and sectioned into very thin slices, often 5 or 10 um. Tissue preparation can
lead to non-uniform desiccation and shrinkage, and handling can easily result in
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tears and other tissue distortions. Using histological data to construct an FEM model
that accurately represents the diseased vessel without artifacts can be difficult. Cit-
ing limited resolution in other non-invasive imaging modalities, Chau et al [116]
used optical coherence tomography (OCT) to construct FEM models of diseased
coronary arteries. OCT is an optical analogue to B-mode ultrasound relying on tis-
sues’ differential interactions with infrared light. OCT is capable of an in-plane
resolution of tens of microns, and has been shown to accurately image the struc-
ture and composition of diseased vessel walls. In [116], the authors used segmented
ex vivo OCT and histological images to construct two 2-D, plane strain FEM models
of the same vessel at the same axial location. All vessel and plaque materials were
modeled with the Mooney-Rivlin strain energy density function given in Eq. (9),
with material parameters as in [86,98,99, 113, 114]. The diseased vessel geometries
as identified by OCT and histology were slightly different in each case modeled,
and the tissue boundaries identified at histological analysis were generally more ir-
regular and jagged than those imaged using OCT. Each model was loaded with a
luminal pressure of 0—120 mmHg in 5 mmHg increments. The computed von Mises
stress and cyclic strain bandplots for each model were divided into 50 angular sec-
tors so that the OCT and histology based models could be compared in a systematic
way. Overall, there was good agreement between the two models, but the histology
based models showed much higher peak stresses in the regions of high luminal edge
curvature. Many of those stress peaks occurred at regions of the vessel where tissue
handling caused reconstruction artifacts and sharp features in the FEM mesh. Unfor-
tunately, the imaging penetration depth for OCT is limited, and imaging of diseased
vessels can sometimes not fully resolve adventitial level features. To understand the
implication of this on the calculated stress and strain fields, the authors used alterna-
tive segmentations of the same OCT data to build different FEM simulations. While
there were certainly some sharp differences in segmented geometries, the overall
stress and strain distributions were remarkably similar, and stress and strain results
were least-affected at the luminal surface, which is of greatest interest. The authors
concluded that OCT showed promise as an imaging tool for the construction of FEM
models of diseased arteries.

OCT and intravascular ultrasound (IVUS) are both capable of imaging vessel
wall structure and composition, and both have been used to study plaque mechanics
on a patient-specific basis. The application of these imaging modalities is, how-
ever, not without challenge. Both OCT and IVUS require catheterization of the
patient, and like any invasive procedure this carries some amount of risk. As men-
tioned, OCT has a limited penetration depth and may not be suitable for the study of
larger, or more heavily diseased vessels. Although IVUS is often used clinically
to investigate vascular structures, its ability to discriminate between soft tissues
is somewhat lacking and may not resolve tissue boundaries adequately for FEM
modeling. Additionally, each modality requires an automated pullback technique to
scan the vessel longitudinally. Motion of the catheter within the vessel during pull-
back introduces significant difficulty in the reconstruction process, and advanced
image registration is thus necessary for 3-D modeling. Although not exclusive to
these modalities, vessel motion through the cardiac cycle, especially in the coronary
arteries, also presents serious challenges.
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Several groups have used MRI data to construct patient-specific FEM simula-
tions of the atherosclerotic vessel. Li et al [117] used multi-sequence MRI to image
diseased carotid arteries in five patients, and constructed 2-D FEM models based
on the axially acquired images to study plaque rupture. 2-D black-blood spin echo
sequences with intermediate T2 weighting and fat saturation, T2 weighting, T1
weighting, and STIR preparation were used to image lipid pool, fibrous cap, and
vessel wall [118, 119]. Image resolution was 0.39 x 0.39x 3 mm. The characteris-
tic appearances of these tissue types in the various imaging sequences allowed for
a manual delineation between important plaque features. The assignment of tissue
types was verified by histology on the same plaques after carotid endarterectomy.
Control vertices from the manual segmentation were imported into a FEM prepro-
cessor and used to define a set of closed B-spline areas suitable for mesh generation.
Of the five plaques studied, two were ruptured as verified by MRI and histology, and
three were intact. FEM meshes for the ruptured plaques represented their probable
pre-rupture states. All materials were modeled with a two-term Ogden formulation,
and material parameters were taken from earlier studies. A mean pressure of 115
mmHg was applied to the luminal surface of all models. The models of unruptured
plaques predicted an average maximum von Mises stress of 226.9 kPa, whereas the
models of ruptured plaques showed an average maximum stress roughly three times
greater. To test the reproducibility of the method, two investigators independently
segmented and modeled plaques based on the same 12 MRI studies. A Pearson
correlation coefficient of 0.83 between computed maximum von Mises stresses sug-
gested that individual error in segmentation and modeling likely influenced results
to only a small degree. The results of the study suggest that maximal effective stress,
influenced primarily by thinness of the fibrous cap and disparity between plaque and
lipid stiffness, may be related to risk of rupture in carotid plaques. While this was
not a new result from FEM modeling of atherosclerotic plaques, the study’s use of
actual plaque morphologies from in vivo MRI effectively introduced a new method
by which plaque mechanics could be studied.

The same group extended their work by modeling the carotid plaques of 30 pa-
tients, 15 of whom had recently experienced a transient ischemic attack attributed
to their carotid disease [55]. Using the techniques described in [117], FEM models
were built for the symptomatic and asymptomatic patients, whose baseline risk fac-
tors and disease features were well matched. FEM mesh generation and analysis was
performed independently from image acquisition and segmentation to avoid biasing
of results. The symptomatic group showed a significantly higher maximal effective
stress than the asymptomatic group, 508.2 4= 193.1 vs 269.6 + 107.9 kPa (95% con-
fidence interval of the difference was 121.7-355.6 kPa, P = .004). Similarly, Tang
et al used ex vivo MRI as the basis for FEM models of 2-D transverse cross sec-
tions of 11 diseased coronary arteries [53]. The plaque specimens were classified
by pathology on a 0-5 scale of rupture vulnerability, and a correlation between the
classification and maximum principal stress was investigated. The data suggested a
significant correlation between maximum principal stress and vulnerability, but the
authors noted that a more comprehensive and large-scale patient study was needed
to verify the patterns observed. The results of these studies suggest that stratifying
carotid disease patients into risk groups based on careful biomechanical analysis
may someday be of clinical utility.
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Noting the Lovett and Rothwell’s observation that carotid plaques were more
likely to ulcerate proximal to the site of maximal stenosis [120], Kock et al [121]
used in vivo MRI and FEM modeling to investigate the longitudinal stress distri-
butions in two patients with symptomatic carotid stenosis. Axial TIW, T2W, PDW,
and TOF images were acquired at resolution of 0.6 x 0.6 x 2mm. As all imaging
studies were made with axial orientation and the FEM models were of longitu-
dinal slices through the diseased carotid bifurcation, significant image processing
and geometry preparation was necessary. Resampling of the raw imaging data us-
ing linear interpolation allowed a final isotropic voxel edge length of 0.3125 mm.
Spline contours for all plaque components and vessel wall were made at each 2-D
imaging slice and combined into 3-D sets of voxels representing different mate-
rials. The voxel sets were smoothed and used to define 3-D isosurfaces of each
plaque component, and a full 3-D multicomponent representation of the diseased
bifurcation was realized. A 3-D skeletonization of the vessel lumen allowed the au-
thors to define a NURBS cutplane through an effective center of the 3-D model,
and the intersection of the 3-D isosurfaces model and the NURBS cutplane estab-
lished the geometry of the longitudinal 2-D model. As the final models were of
longitudinal cross sections, a lumen remained through which blood flow could be
modeled and FSI simulations were made. The meshed FSI model of the bifurcation
was surrounded by a block of additional mesh that represented surrounding tissue.
All solids were considered neo-Hookean, and blood was considered Newtonian. The
material properties for the surrounding tissue were tuned so that vessel dilation at the
proximal common carotid under systolic and diastolic pressure matched the defor-
mation measured with a balanced TFE MR sequence. In effect, this radial constraint
replaces the constraints caused by the natural tubular structure of an artery. Flow
boundary conditions in the dynamic simulations were established through PC-MRI
of the ICA, ECA, and CCA 2 cm proximal and distal to the apex of the bifurcation.
While the models showed clear first principal stress peaks of reasonable magnitude
proximal to the stenotic throat, interpretation of these stresses must be made care-
fully. It is not clear that the actual stresses in the artery are represented. A real artery
would exhibit maximal stress in the circumferential direction, a state of stress not
resolvable with this model. From earlier work [122] it is assumed that plane strain
elements were used to account for an extended geometry, but it is not clear how well
this approximation would hold for such geometry and loading. Kock et al’s model,
nonetheless, represents a comprehensive approach to constructing an FEM model
of the carotid bifurcation from in vivo MRI studies, and contains nearly all salient
modeling techniques used for fully 3-D simulations.

13 3-D Patient-Specific Plaque Studies

While 2-D analyses of diseased vessels have helped to identify relationships be-
tween morphological features and distributions of stress and strain, the in vivo
mechanical state of the vessel is fully three-dimensional. 2-D studies of transverse
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cross sections of the diseased vessel make a plane strain assumption, which may
not be suitable for lesions whose longitudinal extent is limited. These models also
fail to resolve out of plane components of deformation, which may be important
for some lesions, depending on local composition and in vivo axial stretch. Further-
more, as shown in [49, 50, 75, 77], the pressure load felt at a longitudinal position
in a diseased vessel is highly dependent on local geometry and flow conditions. Be-
cause of this, it is difficult to be certain that using systolic pressure loading at the
luminal boundary of the vessel is appropriate in the 2-D model. Because of these
limitations, several groups have begun to model diseased arteries using multicom-
ponent 3-D FEM simulations, with either uniform pressure or strongly coupled FSI
to effect vessel loading. There are numerous challenges in 3-D modeling of dis-
eased vessels. Suitable imaging, image processing and segmentation is difficult to
achieve. Mesh generation for complex 3-D geometries is tedious and mesh indepen-
dence is not easily established. Additionally, nonlinear material response and strong
FSI lead to convergence issues and high computational expense. For these reasons,
3-D multicomponent models of atherosclerotic vessels are relatively few in the lit-
erature compared to 2-D studies. Advances in imaging and FEM techniques, and
the creativity of the groups making such models have allowed these challenges to
be increasingly overcome, and the state-of-the-art is progressing rapidly.

In [53], Tang et al. used high resolution ex vivo MRI of a carotid endarterectomy
specimen as the basis for their 3-D FSI model. Sixty-four slices at a resolution of
0.1 x 0.1 x 0.5 mm were segmented into fibrous plaque and lipid pool; there was no
calcification in the specimen. A constant 0.8 mm thick layer was added around the
segmented geometry to account for the portion of vessel left behind at endarterec-
tomy. The control points from the segmentation contours were used directly in the
FEM preprocessor to construct volumes on which a mesh could be generated. No
distinction was made in the computational mesh between fibrous plaque and ves-
sel wall, and all solids were represented with a Moony-Rivlin material formulation.
The vessel wall contours were extruded several centimeters at the ends of the 3.2 cm
long segment imaged, providing extensions in which entering flow could develop
and post-stenotic flow could return to being unidirectional. Constructing a compu-
tational mesh on which fluid and solid solutions can both converge, without the
computation becoming prohibitively expensive, is a challenging task. While sev-
eral variations were modeled to examine the relative effects of various parameters,
the baseline model used normal tractions of 100 mmHg and 98.5 mmHg at the inlet
and outlet of the flow domain, respectively, for a physiological carotid flow rate
of 17.5ml/s. An axial stretch of 20% was applied to the solid domain (the flow
domain follows due to FSI boundary conditions) to simulate a reasonable in vivo
condition. The study showed that the stresses and strains in the diseased vessel wall
under physiological conditions are indeed highly three dimensional, and dependent
on several factors. The flow boundary conditions and assumed state of axial stretch
were shown to greatly affect the stresses and strains in the wall. Figure 9 compares
the results obtained at the same location using 2-D and 3-D models with and without
FSI and with varying axial stretches (Fig. 9).
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a b c d
3D solid only, P = 100 3D solid only, P = 100 3D FSI, Pin = 100 mmHg, Pout =
2D, P =100 mmHg mmHg, 0% axial stretch mmHg, 20% axial stretch 20mmHg, 20% axial stretch

Min = 0.04

Max (Universal Scale) Min

Fig. 9 (a) 2-D, solid-only model with plane-strain assumption; (b) Fully 3-D solid-only model
without axial stretch; (¢) 3-D solid-only model with axial stretch of 1.2; (d) Full 3-D, FSI model
with pressure conditions at inlet and outlet for physiological flow rate, axial stretch of 1.2 (Taken
from [53])

In the solid only results shown in Fig. 9a, b, ¢ the benefit of the 3-D modeling and
of modeling axial stretch is minimal, as the heavily diseased wall is quite stiff and
resists longitudinal deformations. The differences between models a and d, however,
clearly make a strong case for needing 3-D FSI simulations for stenotic geometries.

As many patient-specific 2-D and 3-D studies of plaque mechanics have indi-
cated, the point of maximum stress is often at a relatively healthy region of the
vessel. This indicates that simply noting the position of the global stress maximum
does not equate to identifying the region of highest rupture potential. Citing this ap-
parent shortcoming in the conclusions of the literature, Tang et al sought to develop
a rupture risk assessment strategy based upon local stress characteristics [52, 123].
The general strategy is to use the accumulating knowledge of radiologists, pathol-
ogists, and medical scientists to select a number of “critical sites” at which various
measures of stress are tracked through a dynamic 3-D FEM simulation based on
in vivo MRI data. A database of FEM models and corresponding histopathologi-
cal characterizations of the same plaques is used to define an ordinal multinomial
general linear model that relates measures of stress at critical sites to a validated
histological scale. In this way, the vast amount of data generated in an extremely
realistic dynamic 3-D FEM simulation can be pared down to stress information lo-
cal to regions of interest and this information can suggest a plaque vulnerability
index. Tang et al’s critical site selection criteria are still evolving and the idea shows
promise in giving clinical utility to the complex and powerful MRI-based 3-D FSI
modeling techniques used in [51-53, 123, 124].

More recently, Tang et al. have used their 2-D/3-D FEM techniques to study
plaque progression as opposed to plaque rupture [51]. Although it is generally ac-
cepted that atherogenesis occurs at regions of low or oscillatory wall shear stress, it
is not understood why more advanced plaques in high wall shear stress environments
continue to develop. Tang et al tested their hypothesis that plaque progression, as
measured by a wall thickness increase, is correlated to mechanical stresses within
the plaque. The study was actually conducted using 2-D FEM models, but a 3-D
FSI model was used for validation purposes. In the study, 20 patients were imaged
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at baseline and after 18 months, one patient received a follow-up MRI study at 10
months. The MRI datasets were used to construct 2-D FEM models of several axial
locations at each time point. Because MRI data is acquired at systemic pressure,
when the vessel is dilated, a shrink-expand approach was taken in the modeling.
A scaling factor was determined for each case such that the scaled down model’s
lumen would match imaging data when the model was subjected to luminal pres-
sure. The typical shrinking factor was 8—10%. Wall thickness was measured as the
shortest distance between a luminal node and the outer wall boundary. Three hun-
dred to seven hundred luminal points at several axial locations were tracked for
each patient at baseline and follow-up, and wall thickness, wall thickness increase,
and maximum principal stress were recorded. The authors report that a statistically
significant negative correlation was found between wall thickness increase and max-
imum principal stress (measured at the later time point) for 18 of 21 patients. Using
a 3-D FSI model, the authors also showed that wall thickness increase was neg-
atively correlated with maximum flow shear stress. While the regression analyses
between wall thickness increase and maximum principal stress and flow shear stress
individually achieved an R? of roughly 0.27, a multiple regression analysis of thick-
ness increase to both wall stress and flow shear stress achieved an R? of 0.637. The
analysis attempted is quite difficult for many reasons, not least of which are the
uncertainty of segmentation and the complicated effects of the shrink-expand tech-
nique. It is hoped that with more data, and more experience, this type of work will
allow for a prediction of plaque progression that can be used clinically for some
benefit. Tang et al are continuing to gather longitudinal patient data so that a greater
number of more comprehensive 3-D FSI analyses can be made.

13.1 Plaque Lesion Fracture, Dissection, Stenting,
and Angioplasty

Most of the 3-D patient-specific studies in the literature focus on quantifying the
stresses and strains in the diseased vessel, admitting elastic deformation but neglect-
ing permanent changes to the structure and mechanical response of the materials.
In contrast, very few studies explicitly consider inelastic effects, for which exper-
imental data and constitutive relations have traditionally been sparse. More recent
developments in constitutive modeling and finite element methods have allowed
researchers to investigate plaque rupture, arterial dissection, and inelastic defor-
mation of the diseased vascular wall. Investigations have increasingly been made
on patient-specific geometries as determined with MRI. It is hoped that such work
will elucidate the critical mechanics of surgical interventions like stenting and bal-
loon angioplasty, as well plaque ruptures that may occur during a lesion’s natural
evolution. Such knowledge would be useful in designing optimal interventional de-
vices and procedures, perhaps on a lesion-specific basis, and for the determination of
medical therapeutics that influence either plaque mechanics or the arterial mechan-
ical environment. Furthermore, detailed knowledge of the mechanical and material
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changes that follow controlled vessel injury from balloon angioplasty or forced lu-
minal patency from stenting could shed light on the primary factors influencing
vessel restenosis, an unfortunately common occurrence after such treatments.

In [125], Holzapfel et al used high resolution ex vivo MRI (0.3 x 0.3 x 1.0 mm)
to determine the structure and composition of a diseased segment of an external il-
iac artery. The imaging data was used to construct a lesion-specific FEM model to
investigate the arterial stresses before, during, and after balloon angioplasty. After
imaging, the arterial segment was cut longitudinally into two halves. One half was
examined histologically to make a detailed determination of the tissue types found
in the lesion. The tissues of the other half were carefully dissected from each other
and subjected to mechanical testing. In this way, the MRI data could be used to ac-
curately define the distribution of tissue types and their specific material responses.
In all, 8 different tissues were distinguished in the diseased vessel and represented
geometrically with NURBS surfaces. Various regions (diseased and not) of the in-
tima, media, and adventitia were all modeled using the fiber reinforced composite
constitutive model presented in [21], with parameters determined from fitting to the
testing data. The non-diseased media and intima were modeled using an elastoplas-
tic adaptation of the same constitutive relation, as given in [61]; the non-diseased
media was the only tissue to exhibit non-recoverable deformation during testing, and
the intima behaves as fully plastic past its yield strength to easily capture damage-
like effects. The finite element equations, using a three-field variational principle to
handle incompressibility, were solved over a structured mesh of eight node hexa-
hedra. The fully inflated balloon was modeled as a 10 mm diameter rigid cylinder,
which is admissible based on experimental observations. An axial stretch of 1.04
was applied to all material layers except the adventitia, on which a stretch of 1.2 was
applied to match experimental observation of the specimen. A luminal pressure of
100 mmHg was applied in all cases. At full balloon dilation, the elastic limits of the
non-diseased intima and media were exceeded, causing non-recoverable deforma-
tion that resulted in a significant luminal gain post-angioplasty. This also indicates
that damage or fracture of the intimal surface is likely during the procedure. The
medial deformation fits well the clinical observation that it is the overstretching of
remnant healthy tissue that gives angioplasty therapeutic efficacy.

Post-angioplasty stresses are quite different than those at systemic pressure be-
fore balloon expansion. The distribution of stress differences is complicated, and
depends heavily on the extent of plastic deformation, the relative volumes of plaque
materials, and their arrangement. The inelastic deformation of the healthy intimal
tissue led to a moderate stress relief there as well as in abutting tissue layers, while
the fibrous intimal tissue at the medial border experienced a 50-60 kPa stress eleva-
tion. Such changes in the mechanical environment of the vessel may be the stimuli
to which the vessel biologically responds, and thus may be related to occurrence of
restenosis. A comparison was made between the baseline results at full balloon di-
lation, and stress fields calculated under simplifying assumptions commonly found
in the literature. Figure 5 in [125] displays the differences, and demonstrates that
assumptions of material isotropy, or plane strain mechanics do not accurately pre-
dict stress fields in such a heterogeneous specimen under supraphysiologic loading.
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This is also suggested in the more general findings of [126], in which an idealized
and simplified lesion was modeled under therapeutic loading. Although idealized,
the diseased vessel model studied by Gasser et al. in [126] was more realistic in the
specific sense that it included residual circumferential stresses. As discussed earlier
in this chapter, residual stresses can have a significant impact on the total state of
stress in the vessel. It is not clear how to best determine these stresses in heavily dis-
eased vessels, so the patient-specific study left them out. Neglecting to account for
in vivo axial stretch was also shown to have a deleterious effect on stress predictions,
most notably in the non-diseased portions of the wall.

In [127], Gasser et al. continued to study the mechanics of balloon angioplasty in
heavily diseased vessels, this time explicitly modeling fissuring and dissection of the
plaque. Their earlier work focused on a fibrotic and calcified plaque, and plasticity
theory was used to model the non-recoverable deformation observed. In this study
however, the focus was a lipid-rich plaque, and the deformation and damage mech-
anisms of such lesions are clinically seen to be different. Informed by the recent
experimental work of Sommer et al [128] and their recent modeling of arterial dis-
section [129], the authors used a cohesive zone formulation and the partition of unity
finite element method and interface element method to represent fissuring and dis-
section of the tissues. The vessel segment studied was from an external iliac artery
with a lipid-rich plaque lesion. High resolution ex vivo MRI was used to delineate
the major tissue types of the diseased vessel, and a 3-D reconstruction was made
based on the methods in [130]. An unstructured tetrahedral mesh was generated
separately for each tissue component, and the interface element method was used to
link boundary surfaces of different components. The authors applied a transforma-
tion to the patient-specific geometry mapping it to an eccentric thick-walled tube,
allowing easy specification of material axes. A pull-back operation on these axes
into the true irregular reference geometry allowed the use of the anisotropic fiber
reinforced composite constitutive relation developed in [3]. Material and structural
parameters were determined through mechanical testing of lesion tissues, as docu-
mented in [125]. At a balloon diameter of 3.52 mm, which represents a significant
expansion of the rather stenotic lumen, maximum principal stresses of roughly 500
kPa are seen at the shoulders of the lesion. An intimal fissure also developed at
the shoulder where the fibrous cap was thinner; until the fissure developed, the me-
dia and adventitia were shielded from stress. In the continuation of this first stage
of failure, fissuring also occurred at the other shoulder, and the load then caused
elevated stresses in the media and adventitia. During a second stage of failure, the
intimal layer dissected from the media at the level of the internal elastic lamina at
the shoulders of the plaque. The authors note that the dissections prevented stress
elevations throughout the lesion, and kept damage local to the dissection sites.

Similar tissue damage patterns were seen in the results of Ferrara and Pandolfi’s
models [131, 132]. In [131], a stenotic artery of unspecified origin was imaged
in vitro using MRI, and a three-layer vessel geometry was constructed with a
lipid pool within the thickened intimal layer. The geometry was meshed in an un-
structured fashion using higher-order tetrahedral elements. After an axial stretch
of 1.2, the luminal surface of the model was subjected to a maximum pressure of
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260mmHg. The authors represented the arterial tissues using the material formu-
lation of Holzapfel, Gasser, and Ogden [21], with material parameters from [133].
Similar to [127], the authors chose to capture damage phenomena with the use of a
cohesive surface formulation as opposed to a sharp crack tip model. In light of the
histological evidence of fiber bridging in [128] and elsewhere, this seems appropri-
ate. Ferrara and Pandolfi’s model shows cracks in the intimal surface that propagate
radially, in agreement with the 2-D fatigue models in [111].

Unlike [129] and [127], where an isotropic cohesive zone model is employed to
handle tissue damage, Ferrara and Pandolfi’s model utilizes an anisotropic cohesive
theory in which material anisotropy gives an ellipsoidal resistance surface, and di-
rectional scaling applies to the traction axis. Experimental evidence [134] suggests
that shear stresses also play a role in tissue damage. Neither Gasser et al, nor Ferrara
and Pandolfi were able to incorporate this observation in their cohesive zone mod-
els however, as there is currently a lack of data characterizing such failure modes.
In fact, as discussed in [127], data are lacking concerning the shape of the cohesive
law, and fracture energy for arterial tissues, and thus the softening region of material
behavior is still largely approximated.

13.2 Stenting

The literature on stenting is extensive, and models of stent placement have been
conducted in 2-D and 3-D idealized and realistic vessels. As a majority of vascular
stents are placed with a balloon catheter during angioplasty, the considerations of
stent placement modeling are largely the same as those for modeling angioplasty,
and the effects of common modeling simplifications are similar. Some stents are
placed directly after a balloon angioplasty procedure or are self-expanding, and
thus the details of modeling the placement and action of the stent may be differ-
ent. From a mechanical point of view, the additional challenges in modeling balloon
expandable stent placement are the complex multi-body contact problem wherein
balloon, stent, and diseased vessel may all interact, and the resolution of arterial
stress fields local to the stent struts. Detailed knowledge of the arterial damage and
focal stresses resulting from stent expansion and placement can help to reveal the
mechanical stimuli for the biological responses that lead to in-stent restenosis. Such
knowledge will additionally inform the design of better stenting procedures and
stents themselves, perhaps on a lesion-specific basis.

The literature contains many studies that focus on finite element-aided optimiza-
tion of stent design. Such works are concerned primarily with expansion dynamics,
plastic deformation, compression behavior, and failure/fatigue risk. These issues are
mainly influenced by the materials used for stent construction, and the geometrical
design of the particular stent, which are design variables; loading is often consid-
ered only generically. In contrast, studies focused on the arterial mechanics of stent
placement must not only accurately model the stent and any deployment device,
but must also fully consider the arterial structure and response, and the interaction
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between vessel and stent. While no study has yet succeeded in modeling all aspects
of balloon, stent, artery, and their interactions simultaneously at the state of the art,
several studies serve as landmarks of modeling progress in the field.

In [125], Holzapfel et al, in addition to studying the mechanics of angioplasty,
investigated the arterial stresses resulting from stent deployment in a human externl
iliac artery. The arterial model’s geometry and material properties were among the
most realistic considered in a stenting study. MRI and histology were used to define
the geometrical arrangement of eight different tissue types, and mechanical testing
of the tissue provided material parameters to the advanced constitutive relation of
[21]. Plastic deformation was modeled to capture the effects of tissue damage from
the supraphysiological loading in a phenomenological sense. The study considered
the deployment of a Palmaz-Schatz stent, with material properties consistent with a
316L stainless steel construction. The stent structure was modeled with three-node
beam elements using a hybrid formulation. The discretization of the diseased artery
was not sufficiently fine to resolve local stress patterns around the cells of the stent,
and only bulk stress and strain fields were obtained in the study. Placement of the
stent caused high circumferential tensile stresses in the non-diseased intima near the
longitudinal boundaries of the device, with compressive axial stresses. The adven-
titial axial stresses were noted to be tensile at this longitudinal position, indicating
that the stress state is indeed complex and three-dimensional. In this study, no at-
tempt was made to model the balloon catheter used to expand the stent, and the
complex contact problem was avoided.

Citing the lack of complete models in the literature, Liang et al. modeled the en-
tire stent deployment system in [135]. The model contained representations of the
balloon, stent, coronary artery wall, and a layer of plaque material affixed to the lu-
minal surface of the idealized artery. The mechanical response of the balloon during
inflation was modeled in two distinct phases to represent the relatively easy initial
inflation and the stiffer response after reaching its original diameter of 2.8 mm. The
balloon was discretized as a cylindrical surface of four-node shell elements. The
open-cell stent with “V” hinges was discretized using 20-node brick elements, as
was the cylindrical layer of plaque material. The artery was modeled with a hypere-
lastic material formulation and its cylindrical geometry was meshed with eight-node
brick elements capable of large deformation analysis. A viscoplastic material for-
mulation was used for the plaque material to achieve non-recoverable deformation
and prevent 100% elastic recoil. Fifteen atom of pressure was applied to the inner
balloon surface, and the lumen of the stenotic artery was expanded from 1.5 mm to
3.5 mm. After balloon deflation, a recoil of 12.3% by diameter was observed, which
was roughly half the recoil of a similar angioplasty-only simulation performed. At
the completion of stent placement, high stresses (~5.5MPa) in the plaque were
observed along the stent struts, and maximum stresses (on the order of 8 MPa)
were seen where the “V” hinges between cells contacted the plaque surface. These
stresses are extremely elevated, no doubt due to the lack of inelastic deformation of
the arterial tissue and hence overstated recoil.

A similar analysis was made by Lally et al. in [136]. In this study, arterial
wall stresses were calculated after deployment of Medtronic’s S7 stent and Boston
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Scientific’s (REF) NIR stent into an axisymmetric stenotic coronary artery with a
crescent-shaped plaque. The material formulation used for the arterial tissue was a
five-term Mooney-Rivlin model, with parameters fit to femoral artery experimental
data from an earlier study. The plaque was assumed to be mainly calcified, and was
also modeled using the five-term Mooney-Rivlin formulation, with parameters taken
from the literature. The stent was modeled as linearly elastic 316L stainless steel,
without plastic deformation. An axial stretch of 1.2 was applied to the arterial mesh
to approximate in vivo conditions. The balloon catheter deployment system was not
modeled, and the loading scheme used was rather interesting. First, a pressure load
of 13 MPa was applied to the hyperelastic artery, with the stent nodes inactivated
in the system matrix through the element “birth — death” feature in the commercial
FEM package. Then, the pressure load on the artery’s luminal surface was incremen-
tally reduced back to 13.3 kPa (100 mmHg) with the (fully expanded) stent nodes
activated in the system matrix, and the contact problem was solved. The stent and
artery/plaque surfaces were modeled using NURBS, and thus a stable contact sce-
nario existed, where contact surface normals vary smoothly over the meshes. The
high quality meshes used for the stent models and for the artery and plaque, and the
automatic remeshing algorithm employed allowed a detailed resolution of contact
stresses throughout the model, and a calculation of stent/tissue contact area. For the
NIR stent, contact area was calculated as 13.9 mm?2, with 21% of the stented artery
experiencing stresses of 4 MPa or greater. The S7 stent contacted 11.3 mm? of the
diseased vessel, and imparted 4 MPa or greater stresses to only 4% of the vessel.
Although the lack of tissue damage and non-recoverable stent deformation certainly
effect the accuracy of the stress predictions, the study is useful on a comparative
basis and may help explain why the clinically observed restenosis rates for the NIR
and S7 stents are 19% and 10% at 6 month follow-up, respectively [137, 138].

In [139], Kiousis et al made what is likely the most accurate and detailed study
on stent deployment to date. The geometry of a diseased external iliac artery was
obtained using ex vivo MRI, and tissue distributions and material properties were
taken from a prior angioplasty study by Gasser et al [127]. The parallel-fiber lim-
iting case of the material formulation given in [3] was used to represent all arterial
tissues in this work. Three stents, Boston Scientific Sverige AB’s Express Vascular
LD, and two parametric variations on that design, were modeled in this study; all
stents were discretized using two-node large displacement, large rotation frame ele-
ments. The stents were all modeled as being 316L stainless steel using a combined
neo-Hookean/von-Mises-Hill plasticity model. The material response of the balloon
is highly anisotropic and nonlinear, and a special material formulation developed by
the authors [140] was employed. This formulation is based on fiber-reinforced com-
posites, and while not a realistic depiction of the balloon’s material structure, it is
capable of capturing well the balloon’s mechanical response. As noted in [136] and
discussed in this work, smooth analytical contact surfaces allow a greater stabil-
ity and accuracy in the solutions of contact problems. For this reason, the contact
surfaces in this work’s node-to-surface contact strategy are represented as uniform
cubic B-spline surfaces, constructed as documented in [140]. This method affords
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C2-continuity at surface borders, but necessitates the use of a structured grid with
quadrilateral faces, thus mesh generation for realistic arteries becomes slightly more
challenging. The stent, artery, and balloon were all allowed to contact each other.
While tissue damage is not explicitly modeled in this work, the results of the pre-
vious angioplasty study of this geometry [127] show that the intima will fissure
and dissect from the media at the shoulders of the plaque lesion. Two intimal tears
consistent with these results are placed within the model geometry so that accurate
stress calculations can be achieved without directly modeling damage. The balloon
catheter and stent are placed into the arterial model with penetration of the meshes,
and an incremental increase of the contact penalty parameter brings the system to
equilibrium where the stent/balloon just contact the luminal surface. An increasing
pressure load is applied to the inner surface of the balloon and the contact problem
is solved incrementally until the balloon outer diameter is 4.5 mm (at about eight
bar), at which point the balloon contact penalty parameter is reduced to simulate
deflation.

Three stent geometries were considered in [139], the Express Vascular LD (here-
after, “factory stent”) as it is manufactured, a variant with ~29% thinner struts, and
a variant with seven struts circumferentially as opposed to the standard 15. All load-
ing and boundary conditions were the same for each case. The authors reported their
results in a clinically relevant manner as a trio of scalars, Dy, D,, and LG, for each
stenting case and an angioplasty-only case. D; is a measure of the total contact force
at the luminal surface of the artery after stent implantation, and can in some sense
be related to extent of tissue prolapse through the stent cells. D, is a measure of the
change in maximum principal Cauchy stress within the artery wall between physio-
logical conditions without stenting and physiological conditions after stenting. LG
is the measure of luminal gain afforded by stent placement. The factory stent and the
stent with fewer struts gave luminal gains of 48% and 47%, respectively, compared
to the 18% achieved through angioplasty damage only. The stent with thinner struts
gave an LG of 42%. While the factory stent and the stent with fewer struts caused
roughly equal stress changes within the wall, the latter stent caused significantly
higher contact stresses at the luminal surface. This makes the stent with fewer struts
more likely to damage the intimal surface, with no significant gain in lumen area
over the factory stent. The authors noted that D; and D, were lowest for the stent
with thinner struts, and its LG was not too far below that of the other stents, possi-
bly indicating that thinner struts are preferred in avoiding vessel damage. This is in
agreement with clinical studies that identified stents with thinner struts as causing
less restenosis as determined angiographically [141, 142].

14 Current Developments

It is clear from the small sample of studies presented in this chapter that vascular
mechanics research has made great progress in recent years. Advances in computa-
tion, constitutive modeling, fluid-structure interaction, medical imaging, and image
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processing have allowed us to reach the point where detailed and accurate studies
may be made of a real artery, healthy or not. Models are being used more and more
to ferret out the complex interplay between mechanics and biology and simulations
are helping us understand the natural progression of vascular diseases. Limitations
of idealized geometries and simple but insufficient material formulations have given
way to sophisticated simulations that are steadily progressing to the stage of routine
clinical utility.

We are not quite there, however, and much work remains to be done before vas-
cular mechanics simulations are accurate enough, robust enough, efficient enough,
and specific enough to be used broadly in the staging of disease or in the design of a
patient-specific therapy. The role of simulation to these ends is still limited to a few
applications at a small number of research hospitals. In addition to the modeling
challenges discussed here, many unanswered questions remain about how best to
use the vast amount of data generated in modern simulations. Several mechanical
descriptors have been correlated to the initiation, progression, and catastrophic res-
olutions of atherosclerotic and aneurysmal diseases, but there are still no universally
accepted mechanical environments linked to these biological phenomena.

One of the biggest challenges in achieving this level of understanding and utility
is the stark lack of constitutive modeling techniques that can accurately represent
the tissues and plaque materials of a specific diseased vessel without direct mechan-
ical testing. Additionally, methods to discern and then incorporate into simulation
the residual stresses that may be present in a diseased vessel are also lacking. Recent
work in elastography shows promise that we will be able to discern patient-specific
material properties, at least within some restricted range of loading conditions. In
elastography, medical imaging data from MRI, OCT, or IVUS is used to estab-
lish a strain map for the arterial tissue. This is typically done by calculating a
cross-correlation of data frames captured at different known pressure loads. In the
transverse approach most often employed, image resolution, noise, and out of plane
motion are deleterious to the accuracy of the strain mapping. When a strain map
is established, and the pressure load is known, the inverse problem is solved for
material stiffness throughout the domain. Various methods are being explored for
strain mapping and the solution of the inverse problem, and the reader is referred to
[143-150] for a review of modern techniques.

As shown in several histological studies of atherosclerotic lesions, the inflamma-
tory state of the plaque is an important determinant of its progression and rupture
potential. Recently, contrast agents and imaging techniques have been developed
so that MR imaging of plaque inflammation is possible. While such contrast agents
and imaging strategies are not yet in standard clinical use worldwide, several studies
have shown their efficacy and potential to compliment FEM studies of diseased ves-
sels. Recent work by Tang and Howarth et al in [151-153] describes these methods,
and the possible correlation of mechanical stress and inflammation in atheromatous
plaques. The results of this work could have wide ranging implications on FEM
simulations of atherosclerotic vessels, from correlative studies to region-specific
material properties or stress interpretations.
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Perhaps one of the more exciting developments in computational vascular me-
chanics is the trend toward incorporating “biochemomechanical” interactions into
numerical simulations. To do this accurately, the biological response of arteries to
mechanical and chemical stimuli like shear and hoop stresses and vasoactive sub-
stances must be well characterized at the cell and tissue level, and the time scales and
spatial extents of the response must be modeled numerically. This requires a theory
of “small-on-large” that integrates the vastly different temporal and spatial scales.
Such work, although in its infancy, shows great promise in investigating the ini-
tiation and progression of aneurysmal disease, atherosclerosis, cerebral vasospasm,
and chronic hypertension, in addition to normal vessel development. Descriptions of
this fluid-solid-growth approach used by several groups to model vascular systems
and their constant remodeling can be found in [69, 154-165].
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